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Course Description

• Classification of signals and their representation as function of time

and frequency domain; Fourier Series & Fourier transform of periodic

and non-periodic signals and their properties; Laplace transform of

signals:- properties and their application; representation of systems:-

classification, convolution integral and system modeling using impulse

response & transfer function;

• Analysis of LTI systems:- using differential equations solution,

frequency response; discrete time signals and systems:- sampled data

(sequences), convolution sum, Z-transform, system analyses in Z-

domain, system function and their realization.
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Course Objectives

Students who successfully complete the course will be able to:

▪ Understand and apply the representation different signals, 

▪ Classification characterization different signals  

▪ analysis of  signals and systems in time and frequency domain

▪ properties and their application; representation of  systems

▪ Representation of  frequency response; discrete and continuous time 

signals and systems
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Text Book:

• Signals and Systems, Second Edition, Simon Haykin and Barry Van Veen, 

John, Wiley & Sons, 2003

References:

• Signals and systems, A.P. Oppenheim, A.S. Willsky, I.T. Young, 2001

• Roberts: Signals and Systems: Analysis using Transform Methods and 

MATLAB, MJ, International Edition, McGraw Hill, 2003.

• Philip Denbigh: System Analysis and Signal, 1988

• **** AMU – AmiT Digital Library Sources (additionally you can referee)

•drs.amu.edu.et

• ils.amu.edu.et
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http://ds.amu.edu.et/xmlui/handle/123456789/16/recent-submissions
http://ils.amu.edu.et/


Evaluation and assessment 
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Evaluation Description Weight/100% Date
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Test I 15%

Assignment I 10%

Test II 20%

Quiz 5%

Final Exam 45%



Chapters

Chapter-1 Introduction to Signal and System 

Chapter-2 Time Domain Representations for LTIS

Chapter-3 Fourier Representations for Signals

Chapter-4 Laplace Transform  

Chapter-5 Z-transform
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Introduction to Signals and Systems
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1.1 Introduction to Signal and System 

• Signal and System analysis is a fundamental course for electrical, 

electronics computer engineering filed.  

Definition of  terms 

•Mathematical model

•Model 

•Signal

•System 
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Cont.
Mathematical Model: is representation of  a system or real world 

problem using mathematical expression(language). and

• The process of  developing mathematical model is known as 

mathematical modeling.

Model: is a simplified form of  representation of  a system or real world events using :

• Mathematical equation 

• Graphs

• Drawing 

• Prototype
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Cont.

Signal: is an abstraction of  any measurable quantity that is a function of  one or 
more independent variables such as time(t) and space(x,y,z)which intended 
conveys information. Or 

• signal: is a set of  information of  data.

A signal: is formally defined as a function of  one or more variables, which 
carries information on the nature of  physical phenomena.

Example of  Signal 

Electrical signal 

• Voltage v(t) and Current I(t) 

Mechanical signal 

• Sound signal 
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Cont …
Light signal 

• Image 

When a signal depends on a single variable, the signal is said to be one-
dimensional (single valued) signal.

• A speech signal: is an example of a one dimensional signal whose

amplitude varies with time, depending on the spoken word and who

speaks it.
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Cont …
When  the function depends on two or more variables, the signal is said 

to be multidimensional signal.

• An image is an example of a two dimensional signal, with the

horizontal and vertical coordinates of the image representing the two

dimension.

• In this course we focus on signals involving a single independent 
variable.
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A system is formally defined as an entity that manipulates one or more

signals to accomplish a function, thereby yielding new signals. or

System: is defined as interconnection of one or more networks in a

designed manner to perform desired task.

• The interaction between a system its associated signals is illustrated 

schematically in figure 1.
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Cont …
The descriptions of the input and output signals naturally depends on the

intended application of the system:

❑ In an automatic speaker recognition system, the input signal

is a speech (voice) signal, the system is a computer and the output

signal is the identity of the speaker

❑ In a communication system, the input signal could be a speech

signal or computer data, the system itself is made up of the

combination of a transmitter, channel and receiver and the output

signal is an estimate of the original message signal.
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Cont …

❑ Electronic Communication System

❑ Electrical Power System 
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1.2 Classification of  Signals
In this course we will restrict our attention to one-dimensional signals 
defined as single valued functions of  time.

“single valued” means that for every instant of  time there is a unique value of  

the function.

• This value may be a real number, in which case we speak of  a real 
valued signal, or

• it may be a complex number, in which case we speak of  a complex-
valued signal.

• In either case, the independent variable, namely time, is real valued.
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Cont …

• We may identify five methods of  classifying signals based on different 

features.

1. Continuous –Time and Discrete-Time Signals

2. Even and Odd Signals

3. Period Signal and Non-Periodic Signal

4. Deterministic Signals and Random Signals

5. Causal and Non-causal Signal 

6. Energy Signals and Power Signals
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1. Continuous –Time and Discrete-Time Signals

Continuous-time signals 

• A signal x(t) is said to be a continuous-time signal if  it is defined 

for all time ‘t’.

• Figure 2(a), represents an example of  a continuous-time signal 

whose amplitude or values varies continuously with time.

• Continuous-time signals arise naturally when a physical waveform 

such as an acoustic (audio) wave or light wave is converted in to 

an electrical signal.
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Cont …

• The conversion is effected by means of  a transducer; examples include the 

microphone, which converts sound pressure variations in to corresponding 

voltage or current variations, and 

• The photocell, which does the same for light-intensity variations.

Discrete-time

• In the case of DT-signal x[n] is defined only at discrete instant of time.

• Thus, in this case, the independent variable has discrete values only, which are

usually uniformly spaced, see Figure 2(b) is DT-Signal.

• A discrete-time signal is often derived from a continuous-time signal by

sampling it at a uniform rete.
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Cont …

• Let T denote the sampling period and ‘n’ denote an integer that may 

assume positive and negative values.

• Sampling a continuous-time signal x(t) at time 𝒕 = 𝒏𝑻 yields a sample of  

values 𝒙(𝒏𝑻).

• For convenience of  presentation, we write:

𝒙 𝒏 = 𝒙 𝒏𝑻 ; 𝒏 = 𝟎, ±𝟏, ±𝟐, ±𝟑, ⋯

• Thus, a discrete-time signal is represented by the sequence numbers

⋯ , 𝒙 −𝟐 , 𝒙 −𝟏 , 𝒙 𝟎 , 𝒙 𝟏 , 𝒙 𝟐 ,⋯
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Cont …

• Such a sequence of  numbers is referred to as a time series, written as:

𝒙 𝒏 , 𝒏 = 𝟎,±𝟏,±𝟐,⋯ 𝑜𝑟 𝒔𝒊𝒎𝒑𝒍𝒚 𝒙[𝒏]

the latter natation is used through out this course.

• Throughout this course, we use the symbol:

➢′𝒕′ to denote time for a CT-signal and the symbol ′𝒏′ for a DT-signal.

➢Parenthesis (.) are used to denote continuous-valued quantities while

bracket [.] are used to denote discrete-valued quantities.

Friday, September 25, 2020 22



2. Even and Odd Signals
• A continuous-time signal 𝒙(𝒕) is said to be an even signal if  it satisfies the 

condition:

𝒙 −𝒕 = 𝒙 𝒕 𝒇𝒐𝒓 𝒂𝒍𝒍 ′𝒕′

• A continuous-time signal 𝒙(𝒕) is said to be an odd signal if  it satisfies the 

condition:

𝒙 −𝒕 = −𝒙 𝒕 𝒇𝒐𝒓 𝒂𝒍𝒍 ′𝒕′

• In other word;

➢Even signals are symmetric about the vertical axis or time origin, 

where as odd signals are anti-symmetric (asymmetric) about the time 

origin.

Notice: Similar remarks apply to discrete-time signals.
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Example 1: Develop the Even/Odd decomposition of  a general signal 

𝒙(𝒕) by applying the definition of  even and odd function:

Solution: Let the signal 𝑥(𝑡) be expressed as the sum of  two components 𝒙𝒆(𝒕)
and 𝒙𝒐(𝒕) as follows:

𝒙 𝒕 = 𝒙𝒆 𝒕 + 𝒙𝒐(𝒕)

• Define 𝒙𝒆(𝒕) to be even and 𝒙𝒐(𝒕) to be odd; that is:

𝒙𝒆 −𝒕 = 𝒙𝒆 𝒕 and 𝒙𝒐 −𝒕 = −𝒙𝒐 𝒕

• Putting 𝑡 = −𝑡; in the expression for 𝒙(𝒕); we may then write 

𝑥 −𝑡 = 𝑥𝑒 −𝑡 + 𝑥𝑜(−𝑡)

𝒙 −𝒕 = 𝒙𝒆 𝒕 − 𝒙𝒐(𝒕)
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Cont …
• Solving for 𝒙𝒆 𝒕 𝑎𝑛𝑑 𝒙𝒐(𝒕), we thus obtain:

𝒙𝒆 𝒕 =
𝒙 𝒕 + 𝒙(−𝒕)

𝟐
𝒂𝒏𝒅 𝒙𝒐 𝒕 =

𝒙 𝒕 − 𝒙(−𝒕)

𝟐

• The above definition of  even and odd signals assume that the signals are real 
valued.

• In the case of  complex-valued signal, we may speak of  conjugate symmetry.

• A complex-valued signal is said to be conjugate symmetric if  it satisfies the 

condition:

𝒙 −𝒕 = 𝒙∗(𝒕)

Where the “asterisk” denotes complex conjugate. 
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Cont …
• Let;

𝒙 𝒕 = 𝒂 𝒕 + 𝒋𝒃(𝒕)

Where:

➢𝒂 𝒕 𝒂𝒏𝒅 𝒃(𝒕) are the real and imaginary part of  𝒙(𝒕) respectively 

➢j is the square root of  -1

• The complex conjugate of  𝒙(𝒕) is:

𝒙∗ 𝒕 = 𝒂 𝒕 − 𝒋𝒃(𝒕)

• From the previous equation it follows that: a complex values signal 𝒙(𝒕) is 

conjugate symmetric if  its real part is even and its imaginary part is odd.

• Notice: similar remark applies to a discrete-time signal.
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Example 2: consider the pair of  signals shown in figure 3. 

Which of  these signals is even and which one is odd?

Example 3: The signals 𝒙𝟏(𝒕) and 𝒙𝟐 𝒕

shown in figure 3 (a) and (b) constitute the real 

and imaginary parts of  a complex-valued signal 

𝒙(𝒕). 

What form of  symmetry does 𝒙(𝒕) have? 
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3. Periodic Signal and Non-Periodic Signal

• A periodic signal 𝒙(𝒕) is a function that satisfies the condition:

𝒙 𝒕 = 𝒙 𝒕 + 𝑻 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕

Where: T is a positive constant

• Clearly, if  this condition is satisfied for 𝐓 = 𝑻𝒐, say, then it is also satisfied for 

𝑻 = 𝟐𝑻𝒐, 𝟑𝑻𝒐, 𝟒𝑻𝒐, ⋯.

• The smallest value of  T that satisfies the above equation is called the 

fundamental period of  𝒙(𝒕).

• The reciprocal of the fundamental period T is called the fundamental

frequency(f) of the periodic signal 𝑥 𝑡 ;
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Cont …

• We thus formally write;

𝒇 =
𝟏

𝑻

• The frequency 𝑓 is measured in hertz (𝑯𝒛) or cycles per second.

• The angular frequency, measured in radians per second, is defined by:

𝝎 =
𝟐

𝑻
= 𝟐𝒇

• Since there are 𝟐 radians in one complete cycle.

• To simplify the terminology, 𝝎 is often referred to simply as frequency.
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Cont …

• Any signal 𝒙(𝒕) for which there is no values of  T to satisfy the condition of  

periodic signal is called aperiodic or non-periodic signal.

• Figures 4 (a) and (b) presents examples of  periodic and non-periodic 

signals, respectively.

• The periodic signal shown here represents a square wave of  amplitude 𝑨 = 𝟏

and period T and the non-periodic signal represents a rectangular pulse of  

amplitude A and duration 𝑻𝟏.
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Cont …
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Example 4:

• Figure 5 shows a triangular wave. What is the fundamental frequency of  

this wave? Express the fundamental frequency in units of  Hz or rad/s.
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.• We next consider the case of  discrete-time signals.

• A discrete time signal 𝒙[𝒏] is said to be periodic if  it satisfies the condition:

𝒙 𝒏 = 𝒙 𝒏 + 𝑵 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊𝒏𝒕𝒆𝒈𝒆𝒓𝒔 𝒏

Where N;  is a positive integer.

• The smallest value of  integer N for which the above equation is satisfied is 

called fundamental period of  the discrete-time signal 𝒙[𝒏].

• The fundamental angular frequency, or simply fundamental frequency of  𝑥[𝑛] is 

defined by:

 =
𝟐
𝑵

(in radians)
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Cont …

• The differences between the defining equations for continuous-time and 

discrete-time periodic signals should be carefully noted.

➢The earlier equation applies to a periodic continuous-time signal whose 

fundamental period T has any positive value.

➢On the other hand, the later equation applies to a periodic discrete-time 
signal whose fundamental period N can only assume a positive 

integer value.

• Two examples of  discrete-time signals are shown in Figure 6 (a) and (b) 

below. The signal in Fig. 6(a) is periodic where as that of  Fig. 6(b) is 

aperiodic.
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Example 5: What is the fundamental frequency of  the discrete –time 

square wave shown in Fig. 6(a)
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4. Deterministic Signals and Random Signals

• A deterministic signal is a signal about which there is no uncertainty with 

respect to its value at any time.

• Accordingly, we find that deterministic signals may be modeled as 
completely specified function of  time.

➢The square wave shown in figure 4(a) and the rectangular pulse shown in 

shown in figure 4(b) are deterministic signals, and so are the signals 

shown in figure 6(a) and (b).

• A random signal is a signal about which there is uncertainty before its 

actual occurrence.
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Cont …

• Such a signal may be viewed as belonging to an ensemble(collective) or 

group of  signals, with each signal in the ensemble having a different wave 

form.

• Moreover, each signal within the ensemble has certain probability of  

occurrence.

• The ensemble of  such signals is referred to as a random process.

• The “noise” generated in the amplifier of  a radio or television receiver is 
an example of  a random signal. Its amplitude fluctuates between positive 

and negative values in a completely random fashion.
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5. Energy Signals and Power Signals

• From examples provided so far, we see that signals may represent a broad 

variety of  phenomena.

• In many, but not all, applications, the signals we consider are directly related to 

physical quantities capturing power and energy in a physical system.

• For example, if  𝒗(𝒕) and 𝒊(𝒕) are, respectively, the voltage and current across 

a resistor with resistance R, then the instantaneous power dissipated in this 

resistor is defined by:

𝒑 𝒕 = 𝒗 𝒕 ∗ 𝒊 𝒕 =
𝟏

𝑹
𝒗𝟐 𝒕 = 𝑹𝒊𝟐(𝒕)
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Cont …
• In both cases, the instantaneous power 𝒑(𝒕) is proportional to the squared 

amplitude of  the signal. Further more, for a resistance R of  1, 

• the two equations take on the same mathematical form.

• The total energy expended over the time interval 𝒕𝟏 ≤ 𝒕 ≤ 𝒕𝟐 is:

𝑬 𝒕 = න

𝒕𝟏

𝒕𝟐

𝒑(𝒕)𝒅𝒕 = න

𝒕𝟏

𝒕𝟐
𝟏

𝑹
𝒗𝟐(𝒕)𝒅𝒕

• The average power over this time interval is:

𝒑𝒂𝒗 =
𝟏

𝒕𝟐 − 𝒕𝟏
න

𝒕𝟏

𝒕𝟐

𝒑(𝒕)𝒅𝒕 =
𝟏

𝒕𝟐 − 𝒕𝟏
න

𝒕𝟏

𝒕𝟐
𝟏

𝑹
𝒗𝟐(𝒕)𝒅𝒕
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Cont ...

• In signal analysis, it is customary to define power in terms of  a 1 resistor, 

so that, regardless of  whether a given signal 𝒙(𝒕) represents a voltage or a 
current, we may express the instantaneous power of  the signal as:

𝒑 𝒕 = 𝒙𝟐(𝒕)

• Based on this convention, we define the total energy of  the continuous-

time signal 𝒙(𝒕) as:

𝑬 = 𝒍𝒊𝒎
𝑻→∞

න

Τ−𝑻 𝟐

Τ𝑻 𝟐

𝒙𝟐(𝒕)𝒅𝒕 = න
−∞

∞

𝒙𝟐(𝒕) 𝒅𝒕
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Cont ...
• And its average power as:

𝑷𝒂𝒗 = 𝒍𝒊𝒎
𝑻→∞

𝟏

𝑻
න

Τ−𝑻 𝟐

Τ𝑻 𝟐

𝒙𝟐(𝒕)𝒅𝒕

• From the last equation, we readily see that the average power of a periodic
signal is 𝒙(𝒕) of fundamental period T is given by:

𝑷𝒂𝒗 =
𝟏

𝑻
න

Τ−𝑻 𝟐

Τ𝑻 𝟐

𝒙𝟐(𝒕)𝒅𝒕
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Cont …
• The square root of  the average power 𝒑𝒂𝒗 is called the root meal-square 

(rms) value of  the signal 𝒙(𝒕).

• In the case of  discrete-time signal 𝒙[𝒏], the integrals are replaced by 

corresponding sums. Thus the total energy of  𝒙[𝒏] is defined by:

𝑬 = ෍

𝒏=−∞

∞

𝒙𝟐[𝒏]

And its average power is defined by:

𝑷𝒂𝒗 = 𝐥𝐢𝐦
𝑵→∞

𝟏

𝟐𝑵
෍

𝒏=−𝑵

𝑵

𝒙𝟐[𝒏]
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Cont …
• Here again, the average power in a periodic signal 𝒙[𝒏] with fundamental 

period N is given by:

𝑷𝒂𝒗 =
𝟏

𝑵
෍

𝒏=𝟎

𝑵−𝟏

𝒙𝟐[𝒏]

❖A signal is referred to as an energy signal, if  and only if  the total energy of  

the signal satisfies the condition:

𝟎 < 𝑬 < ∞

• On the other hand, it is referred to as a power signal, if  and only if  the 

average power of  the signal satisfies the condition:

𝟎 < 𝑷𝒂𝒗 < ∞
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Cont …
• The energy and power classifications of  signals are mutually exclusive.

• In particular:

➢An energy signal has zero average power, whereas a power signal has 

infinite energy.

➢Periodic signals and Random signals are usually viewed as power 

signals, where as signals that are both deterministic and non-periodic 

are energy signals.
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Example 6:

• What is the total energy of:

a) the rectangular pulse shown in figure 7(a)?

b) the discrete-time signal shown in figure 7(b)?

• What is the average power of:

c) the square wave shown in figure 7(c)?

d) the triangular wave shown in figure 7(d)?

e) The periodic discrete-time signal shown in figure 7(e)?
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1.2 Basic operations on Signals
• An issue of  fundamental importance in the study of  signals and systems is 

the use of  systems to process or manipulate signals.

• This issue usually involves a combination of  some basic operations.

• In particular, we may identify a two classes of  operations; described as:

1) Operations performed on dependent variables:

▪ Amplitude scaling, Addition/Subtraction, Multiplication, 

Differentiation, and Integration

2) Operations performed on independent variables:

▪ Time scaling, Reflection, and Time shifting
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1. Operations performed on dependent variables 

Amplitude Scaling:

• Let 𝒙(𝒕) denotes a continuous time signal.

• The signal 𝒚(𝒕) resulting from amplitude scaling applied to 𝒙(𝒕) is defined 

by:

𝒚 𝒕 = 𝒄𝒙(𝒕)

Where: c is the scaling factor.

• According to the above equation, the value of 𝑦(𝑡) is obtained by multiplying

the corresponding values of 𝑥(𝑡) by the scalar c.
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• A physical example of  a device that performs amplitude scaling is an 

electronic Amplifier.

• A resistor also performs amplitude scaling when 𝒙(𝒕) is a current, c is the 

resistance and 𝑦(𝑡) is the output voltage.

• In a similar manner, for discrete-time signals we write:

𝒚 𝒏 = 𝒄𝒙[𝒏]

Addition signals:

• Let 𝑥1(𝑡) and 𝑥2(𝑡) is defined by:

𝒚 𝒕 = 𝒙𝟏 𝒕 + 𝒙𝟐(𝒕)
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• A physical example of  a device that adds signals is an audio mixer which 

combines music and voice signals.

• In a similar manner, for discrete time signals we write:

𝒚[𝒏] = 𝒙𝟏[𝒏] + 𝒙𝟐[𝒏]

Multiplication of  signals:

• Let 𝒙𝟏(𝒕) and 𝒙𝟐(𝒕) denote a pair of  continuous-time signals.

• The signal 𝒚(𝒕) resulting from the multiplication of  𝑥1(𝑡) by 𝑥2(𝑡) is 

defined by:

𝒚 𝒕 = 𝒙𝟏(𝒕)𝒙𝟐(𝒕)
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• That is, for each prescribed time ‘t’ the value of  𝑦(𝑡) is given by the product 

of  the corresponding values of  𝑥1(𝑡) and 𝑥2(𝑡).

• A physical example of  𝑦(𝑡) is an AM radio signal, in which 𝑥1(𝑡) consists 

of  an audio signal plus a DC component, and 𝒙𝟐(𝒕) consists of  a 
sinusoidal signal called a carrier wave.

• In a similar manner, for discrete-time signals we write:

𝒚[𝒏] = 𝒙𝟏[𝒏]𝒙𝟐[𝒏]
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Differentiation of  signal:

• Let 𝑥(𝑡) denote a continuous-time signal.

• The derivation of  𝑥(𝑡) with respect to time is defined by:

𝒚 𝒕 =
𝒅

𝒅𝒕
𝒙(𝒕)

• For example, an inductor performs differentiation.

• Let 𝑖(𝑡) denote the current flowing through an inductor of  inductance L, as 

shown in figure 8.

• The voltage 𝒗(𝒕) developed across the inductor is defined by:

𝒗 𝒕 = 𝑳
𝒅

𝒅𝒕
𝒊(𝒕)
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Integration of  signal:

• Let 𝑥(𝑡) denote a continuous-time signal.

• The integral of  𝑥(𝑡) with respect to time ‘t’ is defined by:

𝒚 𝒕 = න
−∞

𝒕

𝒙(𝝉)𝒅

Where:  is the integration variable.

• For example, a capacitor performs integration. Let 𝒊(𝒕) denote the current 

flowing through a capacitor of  capacitance C, as shown in figure 9.

• The voltage 𝑣(𝑡) developed across the capacitor is defined by;

𝒗 𝒕 =
𝟏

𝑪
න
−∞

𝒕

𝒊(𝝉)𝒅
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2. Signal operations performed on independent variables 

Time Scaling:

• Let 𝒙(𝒕) denote a continuous time signal.

• The signal 𝒚(𝒕) obtained by scaling the independent variable, time t, by a 
factor ‘a’ is defined by:

𝒚 𝒕 = 𝒙(𝒂𝒕)

➢If  𝒂 > 𝟏, the signal 𝒚(𝒕) is a compressed version of 𝒙(𝒕).

➢If  𝟎 < 𝒂 < 𝟏, the signal 𝒚(𝒕) is a expanded (stretched) version of  
𝒙(𝒕).

• The two operations are illustrated in figure 10 below.
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• In discrete-time case, we write:

𝐲 𝐧 = 𝐱 𝐤𝐧 , 𝐤 > 𝟎

Which is defined only for integer values of  k.

➢If  k>1, then some values of  the discrete-time signal 𝒚[𝒏] are lost, as 

illustrated in figure 11 for k = 2.
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Reflection:

• Let 𝒙(𝒕) represents a continuous-time signal.

• Let 𝒚(𝒕) denote the signal obtained by replacing time ‘t’ by ‘-t’, as shown by:

𝒚 𝒕 = 𝒙(−𝒕)

• The signal 𝒚(𝒕) represents a reflected version of  𝒙(𝒕) about the amplitude 

axis.
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• The following cases are of  special interest.

➢Even Signals: for which we have 𝐱 −𝐭 = 𝐱(𝐭) for all ‘t’; that is, an 
even signal is the same as its reflected version.

➢Odd Signal: for which we have 𝒙 −𝒕 = −𝒙(𝒕) for all ‘t’; that is, an 
odd signal is the negative of  its reflected version.

• Similar observation  apply to discrete-time(DT) signals.

Example 7:

• Consider the triangular pulse 𝒙(𝒕) shown in figure 13(a).

Find the reflected version of  𝒙(𝒕) about the amplitude axis.
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Solution:

• Replacing the independent variable ‘t’ in 𝑥(𝑡), with ‘-t’, we get the result 

𝒚 𝒕 = 𝒙(−𝒕) shown in figure 13(b).

Note that: for this example, we have:

𝒙 𝒕 = 𝟎 𝒇𝒐𝒓 𝒕 < −𝑻𝟏 𝒂𝒏𝒅 𝒕 > 𝑻𝟐

Correspondingly, we find that:

𝒚 𝒕 = 𝟎 𝒇𝒐𝒓 𝒕 > 𝑻𝟏 𝒂𝒏𝒅 𝒕 < −𝑻𝟐
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Example 8:
• Find the composite signal 𝒚 𝒏 = 𝒙 𝒏 + 𝒙[−𝒏] for the discrete-time signal 𝑥[𝑛]

defined by:

i. 𝑥 𝑛 = ቐ
1 𝑛 = 1
−1 𝑛 = −1
0 𝑛 = 0 𝑎𝑛𝑑 𝑛 > 1

ii. 𝑥 𝑛 = ቊ
1 𝑛 = −1 𝑎𝑛𝑑 𝑛 = 1
0 𝑛 = 0 𝑎𝑛𝑑 𝑛 > 1

Answer: for i: 𝒚 𝒏 = 0 for all integer values of  n.

for ii: 𝒚 𝒏 = ቊ
2 𝑛 = −1 𝑎𝑛𝑑 𝑛 = 1
0 𝑛 = 0 𝑎𝑛𝑑 𝑛 > 1
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Time Shifting:

• Let 𝒙(𝒕) denote a continuous-time signal.

• The time-shifted version of  𝑥(𝑡) is defined by:

𝒚 𝒕 = 𝒙(𝒕 − 𝒕𝒐)

Where 𝑡𝑜 is the time shift.

➢If  𝑡𝑜 > 0, the waveform representing 𝑥(𝑡) is shifted intact/whole to 

the right, relative to the time axis.

➢If  𝑡𝑜 < 0, it is shifted to the left.
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Example 9:

• Figure 14(a) shows a rectangular pulse 𝒙(𝒕) of  unit amplitude and unit 

duration. Find 𝒚 𝒕 = 𝒙(𝒕 − 𝟐).

Solution:

In this example, the time shift 𝒕𝒐 equals 2

time units we get the rectangular pulse 𝒚(𝒕)

shown in figure 14(b).

The pulse 𝒚(𝒕) has exactly the same shape 

as the original pulse 𝒙(𝒕); it is merely shifted 

along the same axis.
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• In the case of  discrete-time signal 𝒙[𝒏], we define its time-shifted version as 

follows:

𝒚 𝒏 = 𝒙[𝒏 −𝒎]

Where the shift 𝑚 must be an integer; it can be positive or negative.

Example 10:

• Find the time-shifted signal 𝐲 𝐧 = 𝐱[𝐧 + 𝟑] for the discrete-time signal 

𝐱[𝐧] defined by: 

𝑥 𝑛 = ቐ
1 𝑛 = 1, 2

−1 𝑛 = −1,−2
0 𝑛 = 0, 𝑎𝑛𝑑 𝑛 > 2
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Precedence/Priority Rule For Time Shifting And Time 

Scaling

• Let 𝒚(𝒕) denote a continuous-time signal that is derived from another 

continuous-time signal 𝒙(𝒕) through a combination of  time-shifting and time-

scaling, as described here:

𝒚 𝒕 = 𝒙(𝒂𝒕 − 𝒃)

• The relationship between 𝑦 𝑡 and 𝑥(𝑡) satisfies the following conditions:

𝒚 𝟎 = 𝒙 −𝒃 𝑎𝑛𝑑 𝒚
𝒃

𝒂
= 𝒙(𝟎)

Which provide useful checks on 𝒚 𝒕 in terms of  corresponding values of  𝒙(𝒕). 
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.
• To correctly obtain 𝑦(𝑡) from 𝑥(𝑡), the time-shifting and time-scaling 

operations must be performed in the correct order.

• The proper order is based on the fact that the scaling operation always 

replaces “t” by “at”, while the time-shifting operation always replaces “t” by 

“t-b”.

• Hence the time-shifting operation is performed first on 𝑥(𝑡), resulting in an 

intermediate signal 𝑣(𝑡) defined by:

𝒗 𝒕 = 𝒙(𝒕 − 𝒃)

• The time-shift has replaced “t” in 𝑥(𝑡) by 𝑡 − 𝑏.

• Next, the time scaling operation is performed on 𝑣(𝑡).

• This replaces “t” by “at”, resulting in the desired output:

𝑦 𝑡 = 𝑣 𝑎𝑡 = 𝑥(𝑎𝑡 − 𝑏) Friday, September 25, 2020 65



Example 11:
• Consider the rectangular pulse 𝑥(𝑡) of  unit amplitude and duration of  2 time 

units depicted in figure 15. Find 𝑦 𝑡 = 𝑥(2𝑡 + 3).
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• Suppose next that we purposely do not follow the precedence rule; that is, we 

first apply time scaling, followed by time shifting. 

• For the given signal 𝑥(𝑡), shown in figure 16(a), the wave forms resulting 

from the application of  these two operations are shown in figure 16(b) and (c) 

respectively.

• The signal 𝑦(𝑡) so obtained fails to satisfy the condition of  the equation: 

𝑦 Τ𝑏 𝑎 = 𝑥(0)
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Example 12:

• Find 𝑦 𝑛 = 𝑥[2𝑛 + 3] for a discrete-time signal 𝑥[𝑛] defined by:

𝑥 𝑛 = ቐ
1 𝑛 = 1, 2

−1 𝑛 = −1,−2
0 𝑛 = 0, 𝑎𝑛𝑑 𝑛 > 2
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1.3 Elementary Signals

• There are several elementary signals that feature prominently in the study of  signals 

and system.

• The list of  elementary signals includes:

➢Exponential and Sinusoidal Signals

➢Step Function

➢Impulse Function and

➢Ramp Function

• These elementary signals serve as building blocks for the construction of  more 

complex signals.

• They are also important in their own right, in that they may be used to model 

physical signals that occur in nature.
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Exponential Signals

• A real exponential signal, in its most general form, is written as:

𝒙 𝒕 = 𝑩𝒆𝒂𝒕

Where both “B” and “a” are real parameters.

• The parameter “B” is the amplitude of  the exponential signal measured at 𝒕 = 𝟎.

• Depending on weather the other parameter “a” is positive or negative, we may 

identify two special cases:

➢Decaying Exponential, for which 𝒂 < 𝟎

➢Growing Exponential, for which 𝒂 > 𝟎
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• These two forms of  an exponential signal are illustrated in figure 18.

• If  𝑎 = 0, the signal 𝑥(𝑡) reduces to a DC signal equal to the constant “B”.

• For a physical example of  an exponential signal, consider a “lossy” capacitor, as 

depicted in figure 19.

➢The capacitor has capacitance C, and the loss is represented by shunt resistance 

R.

➢The capacitor is charged by connecting a battery across it, and then the battery is 

removed at 𝑡 = 0.

➢Let 𝑉𝑜 denote the initial value of  the voltage developed across the capacitor.
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• From figure 19 we readily see that the operation of  the capacitor for 𝑡 ≥ 0 is 

described by:

𝑅𝐶
𝑑

𝑑𝑡
𝑣 𝑡 + 𝑣 𝑡 = 0

Where 𝑣(𝑡) is the voltage measured across the capacitor at time 𝑡.

• The above equation is a differential equation of  order one.

• Its solution is given by:

𝑣 𝑡 = 𝑉𝑜𝑒
− Τ𝑡 𝑅𝐶

Where the product term 𝑅𝐶 plays the role of  a time-constant.
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• These equation shows that the voltage across the capacitor decays 

exponentially with time at a rate determined by the time constant RC.

➢The larger the resistance R (i.e. the less lossy the capacitor), the slower will 

be the rate of  decay of  𝑣(𝑡) with time.

• In discrete-time it is common practice to write a real exponential signal as:

𝑥 𝑛 = 𝐵𝑟𝑛

• The exponential nature of  this signal is readily confirmed by defining:

𝑟 = 𝑒

For some .
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• Figure 20 illustrates the decaying and growing forms of  a discrete-time 

exponential signal corresponding to 0 < 𝑟 < 1 and 𝑟 > 1, respectively.

• This is where the case of  discrete-time exponential signals is distinctly 

different from continuous-time exponential signals.

• Note that: when 𝑟 < 0, a discrete-time exponential signal assume alternating 

signs.

• The exponential signals shown in figures 18 and 20 are real valued 

• It is possible for an exponential signal to be complex-valued.
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• The mathematical forms of  complex exponential signals are the same as those 

shown in equations:

𝑥 𝑡 = 𝐵𝑒𝑎𝑡 and 𝑥 𝑛 = 𝐵𝑟𝑛

With some differences explained here.

• In the continuous-time case, the parameter “B” or parameter “a” or both 

assume complex values.

• Similarly, in discrete-time case, the parameter “B” or parameter “r” or both 

assume complex values. 

• Two commonly encountered examples of  complex exponential signals are 

𝑒𝑗ω𝑡 and 𝑒𝑗𝑛
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SINUSOIDAL SIGNAL
• The continuous-time version of  a sinusoidal signal, in its most general form, may be 

written as: 

𝑥 𝑡 = 𝐴 ∗ cos(ω𝑡 + Φ)

Where:

➢A is the amplitude

➢ω is the frequency in radians per second and

➢Φ is the phase angle in radians

• Figure 21(a) presents the wave form of  a sinusoidal signal for 𝐴 = 4 𝑎𝑛𝑑 Φ = + Τ 6

• A sinusoidal signal is an example of  a periodic signal, the period of  which is:

𝑇 =
2

ω Friday, September 25, 2020 78
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• We may readily prove the periodicity property of  a sinusoidal signal by using 

the above equation to write:

𝑥 𝑡 + 𝑇 = 𝐴 ∗ cos ω 𝑡 + 𝑇 +Φ

= 𝐴 ∗ cos(ω𝑡 + ω𝑇 +Φ)

= 𝐴 ∗ cos(ω𝑡 + 2π +Φ)

= 𝐴 ∗ cos(ω𝑡 + Φ)

= 𝑥 𝑡

Which satisfies the defining condition of  a periodic signal.
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• To illustrate the generation of  a sinusoidal signal, consider the circuit of  

figure 22 consisting of  an inductor and capacitor connected in parallel.

• It is assumed that the losses in both components of  the circuit are small 

enough for them to be considered “ideal”. 

• The voltage developed across the capacitor at time 

𝑡 = 0 is equal to 𝑉𝑜.

• The operation of  the circuit in figure 22 for 𝑡 ≥ 0

is described by:

𝐿𝐶
𝑑2

𝑑𝑡2
𝑣 𝑡 + 𝑣 𝑡 = 0
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Cont …Where:

➢𝑣(𝑡) is the voltage across the capacitor at time t.

➢C is the capacitance of  the capacitor,

➢L is the inductance of  the inductor

• The above equation is a differential equation of  order two.

• Its solution is given by:

𝑣 𝑡 = 𝑉𝑜 cos ω𝑜𝑡 , 𝑡 ≥ 0

Where ω𝑜 is the natural angular frequency of  oscillation of  the circuit:

ω𝑜 =
1

𝐿𝐶
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• The equation for instantaneous voltage, 𝑣 𝑡 = 𝑉𝑜 cos ω𝑜𝑡 , describes a 

sinusoidal signal of  amplitude A = 𝑉𝑜, frequency ω = ω𝑜 and phase angle 

Φ = 0.

• Consider next the discrete-time version of  a sinusoidal signal, written as:

𝑥 𝑛 = 𝐴 ∗ cos(𝑛 +Φ)

• The period of  a periodic discrete-time signal is measured in samples.

• Thus for 𝑥[𝑛] to be periodic with a period of  N samples, say, it must satisfy 

the condition of  𝑥 𝑛 = 𝑥[𝑛 + 𝑁] for all integer “n” and some integer “N”.
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• Substituting 𝑛 + 𝑁 for 𝑛 in the above equation yields:

𝑥 𝑛 + 𝑁 = 𝐴 ∗ cos(𝑛 +𝑁 +Φ)

For the condition of  periodic signal to be satisfied, in general, we require that:

𝑁 = 2𝑚 𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑜𝑟 =
2𝑚

𝑁

𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑐𝑦𝑐𝑙𝑒
𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑚,𝑁

• The important point to note here is that, unlike continuous-time sinusoidal 

signals, not all discrete-time sinusoidal systems with arbitrary values of   are 

periodic.
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Cont …• Specifically, for the discrete-time 

sinusoidal signal described in: 

𝑥 𝑛 = 𝐴 ∗ cos(𝑛 + Φ)

to be periodic, the angular frequency

 must be a rational multiple of  2

as indicated in: 

 =
2𝑚
𝑁

Figure 23 illustrates a discrete-time 

sinusoidal signal for 𝐴 = 1,Φ = 0 𝑎𝑛𝑑 𝑁 = 12.
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Example 13:
• A pair of  sinusoidal signals with a common angular frequency is defined by:

𝑥1 𝑛 = sin 5𝑛 𝑎𝑛𝑑 𝑥2 𝑛 = 3cos[5𝑛]

a) Specify the condition which the period N of  both 𝑥1 𝑛 and 𝑥2 𝑛 must 

satisfy for them to be periodic.

b) Evaluate the amplitude and phase angle of  the composite sinusoidal signal:

𝑦 𝑛 = 𝑥1 𝑛 + 𝑥2 𝑛

Solution:

a) The angular frequency of  both 𝑥1 𝑛 and 𝑥2 𝑛 is:

 = 5 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑐𝑦𝑐𝑙𝑒
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• Solving for the period N:

𝑁 =
2𝑚


=
2𝑚

5
=
2𝑚

5

➢For 𝑥1 𝑛 and 𝑥2 𝑛 to be periodic, their period N must be an integer.

➢This can only be satisfied for 𝑚 = 5, 10, 15, … which results 𝑁 = 2, 4, 6, …

b) We wish to express 𝑦[𝑛] in the form:

𝑦 𝑛 = 𝐴 ∗ cos(𝑛 + Φ)

Recall the trigonometric identity:

𝐴 ∗ cos 𝑛 + Φ = 𝐴 ∗ cos 𝑛 ∗ cos Φ − 𝐴 ∗ sin 𝑛 ∗ sin Φ
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• Identifying  = 5, we see that the right-hand side of  this identity is of  the 

same form as 𝑥1 𝑛 + 𝑥2 𝑛 .

• We may therefore write:

𝐴𝑠𝑖𝑛 Φ = −1 𝑎𝑛𝑑 𝐴𝑐𝑜𝑠 Φ = 3

Hence:

tan Φ =
sin(Φ)

𝑐𝑜𝑠 Φ
=
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑥1[𝑛]

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑥2[𝑛]
=
−1

3

For which we find that Φ = − Τ 6 radians.
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• Similarly, the amplitude A is given by:

𝐴 = (𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑥1 𝑛 )2+(𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑥2 𝑛 )2= 1 + 3 = 2

Accordingly, we may express 𝑦[𝑛] as: 𝑦 𝑛 = 2cos(5𝑛 − Τ 6)

Example 14: Consider the following sinusoidal signals. Determine whether 

each 𝑥[𝑛] is periodic, and if  it is, find its fundamental period.

a) 𝑥 𝑛 = 5 sin 2𝑛

b) 𝑥 𝑛 = 5cos 0.2𝑛

c) 𝑥 𝑛 = 5 cos 6𝑛

d) 𝑥 𝑛 = 5sin[ Τ6𝑛 35]
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Answer:

(a) Non-periodic (b) Periodic, fundamental period = 10. (c) Periodic, 

fundamental period = 1. (d) Periodic, fundamental period = 35.
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RELATION BETWEEN SINUSOIDAL AND 

COMPLEX EXPONENTIAL SIGNALS
• Consider the complex exponential 𝑒𝑗.

• Using Euler’s identity, we may expand this term as:

𝑒𝑗 = 𝑐𝑜𝑠+ 𝑗𝑠𝑖𝑛

• This result indicates that, we may express the continuous-time sinusoidal 

signal of: 

𝑥 𝑡 = 𝐴 ∗ cos(ω𝑡 + Φ)

as the real part of  the complex exponential signal:

𝐵𝑒𝑗ω𝑡
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Where B is itself  a complex quantity defined by:

𝐵 = 𝐴𝑒𝑗Φ

• That is, we may write:

𝐴 ∗ cos ω𝑡 + Φ = 𝑅𝑒{𝐵𝑒𝑗ω𝑡}

Where 𝑅𝑒{ } denotes the real part of  the complex quantity enclosed inside the 

braces.

• We may readily prove this relation by noting that:

𝐵𝑒𝑗ω𝑡 = 𝐴𝑒𝑗Φ𝑒𝑗ω𝑡

= 𝐴𝑒𝑗(ω𝑡+Φ)

= 𝐴 cos ω𝑡 + Φ + 𝑗𝐴 sin ω𝑡 + Φ
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• Previously the sinusoidal signal is defined in terms of  a cosine function. 

• Of  course, we may also define a continuous time sinusoidal signal in terms of  

a sine function, as shown by:

𝑥 𝑡 = 𝐴 sin ω𝑡 + Φ

• Which is represented by the imaginary part of  the complex exponential signal 

𝐵𝑒𝑗ω𝑡.

• That is, we may write:

𝐴 sin ω𝑡 + Φ = 𝐼𝑚{𝐵𝑒𝑗ω𝑡}

Where 𝐼𝑚{ } denotes the imaginary part of  the complex quantity enclosed 

inside the braces.
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• The sinusoidal signal 𝐴 sin ω𝑡 + Φ differs from that of  𝐴 cos ω𝑡 + Φ by 

a phase shift of  90𝑜.

• That is, the sinusoidal signal 𝐴 cos ω𝑡 + Φ leads the sinusoidal signal 

𝐴 sin ω𝑡 + Φ , as illustrated in figure 21 for Φ = Τ 6.

• Similarly, in the discrete-time case we may write:

𝐴𝑐𝑜𝑠 𝑛 + Φ = 𝑅𝑒 𝐵𝑒𝑗𝑛 𝑎𝑛𝑑 𝐴𝑠𝑖𝑛 𝑛 +Φ = 𝐼𝑚 𝐵𝑒𝑗𝑛

Where B is defined in terms of  A and Φ by 𝐵 = 𝐴𝑒𝑗Φ.
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• Figure 24 shows the two dimensional representation of  complex exponential 

𝑒𝑗𝑛 for  = Τπ 4 and n = 0, 1,⋯ , 7.

• The projection of  each value on the real axis is 𝑐𝑜𝑠 𝑛 , while the projection 

on the imaginary axis is 𝑠𝑖𝑛 𝑛 .
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EXPONENTIALLY DAMPED SINUSOIDAL 

SIGNAL
• The multiplication of  a sinusoidal signal by a real-valued decaying exponential 

signal results in a new signal referred to as an exponentially damped 

sinusoidal signal.

• Specifically, multiplying the continuous-time sinusoidal signal 𝐴𝑠𝑖𝑛(ω𝑡 + Φ)
by the exponential 𝑒−𝑡 results in the exponentially damped sinusoidal signal:

𝑥 𝑡 = 𝐴𝑒−𝑡𝑠𝑖𝑛 ω𝑡 + Φ ,  > 0

• Figure 25 shows the wave form of  this signal for 𝐴 = 60, α = 6 𝑎𝑛𝑑 Φ = 0.

• For increasing time “t”, the amplitude of  the sinusoidal oscillations decreases 

in an exponential fashion, approaching zero for infinite time.
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• To illustrate the generation of  an exponentially damped sinusoidal signal, 

consider the parallel circuit of  figure 26, consisting of  a capacitor of  

capacitance C, an inductor of  inductance L, and a resistor of  resistance R.

• The resistance R represents the combined effect of  losses associated with the 

inductor and the capacitor.

• Let 𝑉𝑜 denote the voltage developed across the capacitor 

at time 𝑡 = 0.

• The operation of  the circuit in figure 26 is described by:

𝐶
𝑑

𝑑𝑡
𝑣 𝑡 +

1

𝑅
𝑣 𝑡 +

1

𝐿
∞−׬
𝑡
𝑣 τ 𝑑τ = 0
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• Where 𝑣(𝑡) is the voltage across the capacitor at time 𝑡 ≥ 0.

• The above equation is an integro-differential equation.

• Its solution is given by:

𝑣 𝑡 = 𝑉𝑜𝑒
Τ−𝑡 2𝑅𝐶cos(ω𝑜𝑡)

Where:

ω𝑜 =
1

𝐿𝐶
−

1

4𝐶2𝑅2

In the last equation it is assumed that 4𝐶𝑅2 > 𝐿

Friday, September 25, 2020AMiT-ECE             SIGNALS AND SYSTEMS                 CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS 99



Cont …

• Comparing 𝑥 𝑡 = 𝐴𝑒−𝑡𝑠𝑖𝑛 ω𝑡 + Φ and 𝑣 𝑡 = 𝑉𝑜𝑒
Τ−𝑡 2𝑅𝐶cos(ω𝑜𝑡); 

we have:

𝐴 = 𝑉𝑜,  = Τ1 2𝑅𝐶 , ω = ω𝑜 𝑎𝑛𝑑 Φ = Τπ 2 .

• Returning to the subject matter at hand, the discrete-time version of  the 

exponentially damped sinusoidal signal is described by:

𝑥 𝑛 = 𝐵𝑟𝑛sin[𝑛 + Φ]

For the signal to decay exponentially with time, the parameter 𝑟 must lie in the 

range 0 < 𝑟 < 1.

Friday, September 25, 2020AMiT-ECE             SIGNALS AND SYSTEMS                 CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS 100


