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Course Description

Classification of signals and their representation as function of time
and frequency domain; Fourier Series & Fourier transform of periodic
and non-periodic signals and their properties; Laplace transform of
sighals:- properties and their application; representation of systems:-
classification, convolution integral and system modeling using impulse
response & transter function;

Analysis of LTI systems:- using differential equations solution,
frequency response; discrete time signals and systems:- sampled data
(sequences), convolution sum, Z-transform, system analyses in Z-
domain, system function and their realization.




Course Objectives

Students who successfully complete the course will be able to:
Understand and apply the representation different signals,
Classification characterization different signals
analysis of signals and systems in time and frequency domain

properties and their application; representation of systems

Representation of frequency response; discrete and continuous time

signals and systems
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Evaluation Description Weight/100% |Date
Test 1 15%
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g Test 11 20%
3 Quiz 5%
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1.1 Introduction to Signal and System

Signal and System analysis is a fundamental course for electrical,

electronics computer engineering filed.

Definition of terms

Mathematical model
Model
Signal

System

AMIT-ECE SIGNALS AND SYSTEMS CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS Friday, September 25, 2020




Cont.

© Mathematical Model: is representation of a system or real world o
problem using mathematical expression(language). and

The process of developing mathematical model is known as
mathematical modeling.

Model: 1s a simplified form of representation of a system or real world events using :

Mathematical equation
Graphs
Drawing

Prototype
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Signal: is an abstraction of any measurable quantity that is a function of one or
more independent variables such as time(t) and space(x,y,z)which intended
conveys information. Or

signal: 1s a set of information of data.

A signal: is formally defined as a function of one or more variables, which
carries information on the nature of physical phenomena.

Example of Signal
Electrical signal
Voltage v(t) and Current I(t)
Mechanical signal

Sound signal
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< Light signal

Image

When a signal depends on a single variable, the signal 1s said to be one-
dimensional (single valued) signal.

A speech signal: is an example of a one dimensional signal whose
amplitude varies with time, depending on the spoken word and who
speaks it.
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© <
When the function depends on two or more variables, the signal is said

to be multidimensional signal.

An image 1s an example of a two dimensional signal, with the
horizontal and vertical coordinates of the image representing the two
dimension.

In this course we focus on signals involving a single independent
variable.
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System

A system is formally defined as an entity that manipulates one or mote —
signals to accomplish a function, thereby yielding new signals. or

System: is defined as interconnection of one or more networks in a
designed manner to perform desired task.

The interaction between a system its associated signals is illustrated
schematically in figure 1.

| ~ SYSTEM e

Ouatput Signal

Input Signal

FIGURE 1: Block diagram representation of a system
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~ The descriptions of the input and output signals naturally depends on the
intended application of the system:

In an automatic speaker recognition system, the input signal

is a speech (voice) signal, the system 1s a computer and the output
signal is the identity of the speaker

In a communication system, the input signal could be a speech
sighal or computer data, the system itself i1s made up of the
combination of a transmitter, channel and receiver and the output
signal 1s an estimate of the original message signal.
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Electronic Communication System
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1.2 Classification of Signals

In this course we will restrict our attention to one-dimensional signals
defined as single valued functions of time.

“single valued” means that for every instant of time there 1s a unique value of
the function.

This value may be a real number, in which case we speak of a real
valued signal, or

it may be a complex number, in which case we speak of a complex-
valued signal.

In either case, the independent variable, namely time, is real valued.
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We may identify five methods of classifying signals based on different
features.

Continuous —Time and Discrete-Time Signals
Even and Odd Signals

Period Signal and Non-Periodic Signal
Deterministic Signals and Random Signals
Causal and Non-causal Signal

Energy Signals and Power Signals

AMIT-ECE SIGNALS AND SYSTEMS CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS Friday, September 25, 2020
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1. Continuous —Time and Discrete-Time Signals
®

Continuous-time signals

A signal x(%) 1s said to be a continuous-time signal if it is defined
for all time ‘t’.

Figure 2(a), represents an example of a continuous-time signal
whose amplitude or values varies continuously with time.

Continuous-time signals arise naturally when a physical wavetorm
such as an acoustic (audio) wave or light wave is converted in to
an electrical signal.
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x(1) x[n]

0 0
0
¢
(a) (b)
Figure 2: (a) Continuous-time signal x(f)  (b) Representation of x(f) as a discrete-time signal x/n]
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The conversion is effected by means of a transducer; examples include the
microphone, which converts sound pressure variations in to corresponding
voltage or current variations, and
The photocell, which does the same for light-intensity variations.
Discrete-time
In the case of DT-signal x[n] is defined only at discrete instant of time.
Thus, in this case, the independent variable has discrete values only, which are
usually uniformly spaced, see Figure 2(b) is DT-Signal.
A discrete-time signal is often derived from a continuous-time signal by
sampling it at a uniform rete.
o AMIT-ECE SIGNALS AND SYSTEMS CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS Friday, September 25, 2020 20 ‘©
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Let T denote the sampling period and ‘n’ denote an integer that may
assume positive and negative values.

Sampling a continuous-time signal x(z) at time £ = nT yields a sample of
values x(nT).

For convenience of presentation, we write:
x|n| = x(nT); n =0, +1, t2 3

Thus, a discrete-time signal is represented by the sequence numbers

e x[_Z], x[_l], x[O], x[l], x[Z],
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O (o)
Such a sequence of numbers is referred to as a time setries, written as:

{xIn,n=0,+1,%+2,---} or simply x[n]

the latter natation 1s used through out this course.

Throughout this course, we use the symbol:
't to denote time for a CT-signal and the symbol 'n’ for a DT-signal.

Parenthesis (.) are used to denote continuous-valued quantities while

bracket [.] are used to denote discrete-valued quantities.
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2. Even and Odd Signals

A continuous-time signal x(t) is said to be an even signal if it satisfies the
condition:

x(—t) =x(t) forall't

A continuous-time signal x(t) is said to be an odd signal if it satisfies the
condition:

x(—t) =—x(t) forall't
In other word;

Even signals are symmetric about the vertical axis or time origin,
where as odd signals are anti-symmetric (asymmetric) about the time
origin.

Notice: Similar remarks apply to discrete-time signals.
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Example 1: Develop the Even/Odd decomposition of a general signal

x(t) by applying the definition of even and odd function:
Solution: Let the signal x(t) be expressed as the sum of two components X, (t)

and X, (%) as follows:
x(t) = x.(t) + x,(t)
Define x,(t) to be even and X, (t) to be odd; that is:
Xe(—1) = x,(1) and Xo(=1) = —x,(t)
Putting t = —t; in the expression for x(t); we may then write
X 0) =% (0 (0]
x(—t) = x(t) — x,()
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e Solving for x,(t) and x,(t), we thus obtain: v
xX(t) + x(—t xX{t)—x( 1
e oo o o
Z 2
The above definition of even and odd signals assume that the signals are real
valued.

In the case of complex-valued signal, we may speak of conjugate symmetry.

A complex-valued signal is said to be conjugate symmetric if it satisfies the
condition:

x(—t) = x*(¢t)

Where the “asterisk denotes complex conjugate.

Friday, September 25, 2020 25
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x(t) = a(t) +jb(t)
Where:
a(t) and b(t) are the real and imaginary part of X(t) respectively

J is the square root of -1
The complex conjugate of x(t) is:
x*(t) = a(t) — jb(t)

From the previous equation it follows that: a complex values signal x(t) is
conjugate symmetric if its real part is even and its imaginary part is odd.

Notice: similar remark applies to a discrete-time signal.
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Example 2: consider the pair of signals shown in figure 3.
Which of these signals is even and which one is odd?

Example 3: The signals x4 (t) and x5 (t) %(t) (1)
A
shown in figure 3 (a) and (b) constitute the real A
and imaginary parts of a complex-valued signal
x(t). ot o
What form of symmetry does x(t) have? .4
(3 (b)

Figure 3: Examples of Continuous-Time Signal
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3. Periodic Signal and Non-Periodic Signal

© ©
A periodic signal x(t) is a function that satisfies the condition:

x(t) =x(t+T) forallt

Where: T is a positive constant

Clearly, if this condition is satisfied for T = T, say, then it is also satisfied for
r=21,3T,4T,, .

The smallest value of T that satisfies the above equation is called the
fundamental period of x(t).

The reciprocal of the fundamental period T is called the fundamental
frequency(f) of the periodic signal x(t);
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We thus formally write;
1

i
The frequency f is measured in hertz (HZ) or cycles per second.
The angular frequency, measured in radians per second, 1s defined by:

21

w = ? = 2% f
Since there are 21 radians in one complete cycle.
To simplity the terminology, w is often referred to simply as frequency.
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Any signal x(t) for which there is no values of T to satisfy the condition of

periodic signal is called aperiodic or non-periodic signal.

Figures 4 (a) and (b) presents examples of periodic and non-periodic

signals, respectively.

The periodic signal shown here represents a square wave of amplitude 4 = 1
and period T and the non-periodic signal represents a rectangular pulse of

amplitude A and duration T';.
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| I T R S N 0
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() (h)

Figure 4: (a) Square wave with amplitude A = 1, and period T = 0.2 s (b) Rectangular pulse of amplitude A and duration T1
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Amplitude

Example 4:

Figure 5 shows a triangular wave. What is the fundamental frequency ot
this wave? Express the fundamental frequency in units of Hz or rad/s.

| | | | | | | | 5
() (3.1 62 3 04 05 066 07 08 09 I

Time £, seconds

Figure 5: Triangular Wavealtering between - 1 and + 1 with fundamental period of 0.2 second
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We next consider the case of discrete-time signals.

A discrete time signal x|n] is said to be periodic if it satisfies the condition:
x|n] = x|n + N] for all integersn

Where Nj is a positive integet.

The smallest value of integer N for which the above equation is satisfied is
called fundamental period of the discrete-time signal x|n|.

The fundamental angular frequency, or simply fundamental frequency of x[n] is

defined by:

Q = =% (in radians)

Friday, September 25, 2020 33
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The differences between the defining equations for continuous-time and
discrete-time periodic signals should be carefully noted.

The earlier equation applies to a periodic continuous-time signal whose
fundamental period T has any positive value.

On the other hand, the later equation applies to a periodic discrete-time
signal whose fundamental period N can only assume a positive
integer value.

Two examples of discrete-time signals are shown in Figure 6 (a) and (b)
below. The signal in Fig. 6(a) is periodic where as that of Fig. 6(b) is
aperiodic.
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s Example 5: What is the fundamental frequency of the discrete —time

square wave shown in Fig. 6(a)

J w

b1

II.H]

[

J

o]

)

[

q

T L Time »

v

x(n|

|

’ 4 -3 2 .1 0 1 2 3 4

Figure 6(b): Aperiodic Discrete-Time Signal consisting of
three non-zero samples

I I ] :.I:I

Figure 6(a): Discrete-Time Square Wavealternating between - 1 and + 1
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4. Deterministic Signals and Random Signals

A deterministic signal is a signal about which there 1s no uncertainty with
respect to its value at any time.

Accordingly, we find that deterministic signals may be modeled as
completely specified function of time.

The square wave shown in figure 4(a) and the rectangular pulse shown in
shown in figure 4(b) are deterministic signals, and so are the signals

shown 1n figure 6(a) and (b).

A random signal is a signal about which there is uncertainty before its
actual occurrence.
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Such a signal may be viewed as belonging to an ensemble(collective) or
group of signals, with each signal in the ensemble having a different wave
form.

Moreover, each signal within the ensemble has certain probability of
occurrence.

The ensemble of such signals is referred to as a random process.

The “noise” generated in the amplifier of a radio or television receiver 1s
an example of a random signal. Its amplitude fluctuates between positive
and negative values in a completely random fashion.
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5. Energy Signals and Power Signals

From examples provided so far, we see that signals may represent a broad
variety of phenomena.

In many, but not all, applications, the signals we consider are directly related to
physical quantities capturing power and energy in a physical system.

For example, if v(t) and i(t) are, respectively, the voltage and current across
a resistor with resistance R, then the instantaneous power dissipated in this
resistor 1s defined by:

1
p(t) = v(t) i(t) = Evz(t) = Ri*(t)
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In both cases, the instantaneous power p(t) is proportional to the squared

amplitude of the signal. Further more, for a resistance R of 102,
the two equations take on the same mathematical form.

The total energy expended over the time interval t1 < t < 5 is:

E(t) = jzp(t)dt = f%vz(t)dt

The average power over this time interval is:

) )
= j e jl “(td
pav_tz_t1 p()t_tz_tl Rv()t
t1 t1
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In signal analysis, it is customary to define power in terms of a 1€ resistor,

so that, regardless of whether a given signal x(t) represents a voltage or a
current, we may express the instantaneous power ot the signal as:

p(t) = x*(t)

Based on this convention, we define the total energy of the continuous-
time signal x(t) as:

T/2
/ 00
= g 2 = 2
E=1lim x“(t)yd; = x“(t) d;
T—>oo
8.9,
~T/2
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< ¢ Andits average power as: @
T/2
ol 2
Poy = Tl‘l—zgf f x“(t)d,
2

From the last equation, we readily see that the average power of a periodic
signal is x(t) of fundamental period T is given by:

T/2
1 2
Pu== | #00,
_T/2
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The square root of the average power P, 1s called the root meal-square
(rms) value of the signal x(t).

In the case of discrete-time signal x|n], the integrals are replaced by
corresponding sums. Thus the total energy of x|n| is defined by:

00]

E = Z x%[n]

n=—oo

And its average power is detfined by:

N
aald .
P“”::l“nfiﬁ zz:as[n]

N—-o00
n=—N
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Here again, the average power in a periodic signal x|n| with fundamental

period N is given by:
N—-
- z
av S N

A signal 1s referred to as an energy signal, if and only if the total energy of
the signal satisties the condition:

O0<E<

On the other hand, it is referred to as a power signal, if and only if the
average power of the signal satisfies the condition:

O<P,, <
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The energy and power classifications of signals are mutually exclusive.
In particular:

An energy signal has zero average power, whereas a power signal has
infinite energy.

Periodic signals and Random signals are usually viewed as power
signals, where as signals that are both deterministic and non-periodic
are energy signals.

/

AMIT-ECE SIGNALS AND SYSTEMS CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS Friday, September 25, 2020 44




Example 6:
. What 1s the total energy of:
the rectangular pulse shown in figure 7(a)?
the discrete-time signal shown in figure 7(b)?
What is the average power of:
the square wave shown in figure 7(c)?
the triangular wave shown 1in figure 7(d)?

The periodic discrete-time signal shown in figure 7(e)?
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1.2 Basic operations on Signals

An 1ssue of fundamental importance in the study of signals and systems is
the use of systems to process or manipulate signals.

This 1ssue usually involves a combination of some basic operations.
In particular, we may identify a two classes of operations; described as:
Operations performed on dependent variables:

Amplitude scaling, Addition/Subtraction, Multiplication,
Differentiation, and Integration

Operations performed on independent variables:

Time scaling, Retlection, and Time shifting
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® 1. Operations performed on dependent variables

Amplitude Scaling:

Let x(t) denotes a continuous time signal.

The signal y(t) resulting from amplitude scaling applied to x(t) is defined
by:

y(t) = cx(t)
Where: c is the scaling factor.

According to the above equation, the value of y(t) is obtained by multiplying
the corresponding values of x(t) by the scalar c.
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A physical example of a device that petrforms amplitude scaling is an
electronic Amplifier.

A resistor also performs amplitude scaling when x(t) is a current, c is the
resistance and Y (t) is the output voltage.

In a similar manner, for discrete-time signals we write:
y[n] = ex[n]
Addition signals:
Let x4 (t) and x5 (t) is defined by:
y(t) = x4 () + x2(t)
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A physical example of a device that adds signals is an audio mixer which
combines music and voice signals.

In a similar manner, for discrete time signals we write:
y[n| = x4[n] + x;[n|

Multiplication of signals:

Let x4 (%) and x5 (&) denote a pair of continuous-time signals.

The signal y(t) resulting from the multiplication of x1(t) by x5 (t) is
defined by:

y(t) = x1(t)x2(1)
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That is, for each prescribed time t’ the value of y(t) is given by the product
of the corresponding values of x1(t) and x,(t).

A physical example of y(t) is an AM radio signal, in which x4 (t) consists
of an audio signal plus a DC component, and X5 (t) consists of a
sinusoidal signal called a carrier wave.

In a similar manner, for discrete-time signals we write:

y[n| = x41[n]xz[n]
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~ Differentiation of signal:
Let x(t) denote a continuous-time signal. @
O
. . . . . +
The derivation of x(t) with respect to time is defined by: " .
A
d
(8} == o)
Figure 8: Inductor with current i(t),
N = N 2 inducing voltage v(t) across its terminals
For example, an inductor performs differentiation. phie
Let i(t) denote the current flowing through an inductor of inductance L, as
shown in figure 8.
The voltage V(t) developed across the inductor is defined by:
d
v(t) = L—i(t
@ Friday, September 25, 2020 52 ‘©
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Olntegration of signal: @

Let x(t) denote a continuous-time signal. i(t)
Cr
The integral of x(t) with respect to time ‘t’ is defined by: '

t () - C
yo=| x@d o
— 00 O
3 > $ p Figure 9: Capacitor with v(t) across
Where: T is the integration variable. its terminals, inducing current i(t)

For example, a capacitor performs integration. Let I(t) denote the current
flowing through a capacitor of capacitance C, as shown in figure 9.

The voltage v(t) developed across the capacitor is defined by;
t

1
v(t) = = f i(7)dy

— 00
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2. Signal operations performed on independent variables

Time Scaling:
Let x(t) denote a continuous time signal.

The signal y(t) obtained by scaling the independent vatiable, time t, by a
factor ‘a’1s defined by:

y(t) = x(at)
If a > 1, the signal y(t) is a compressed version of x(t).

If 0 < a <1, the signal y(t) is 2 expanded (stretched) version of
Xt

The two operations are illustrated in figure 10 below.
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y(t) = x(28)

Figure 10: Time Scaling operation: (a) Continuous-Time Signal x(t), (b) compressed version of x(t) by a factor of 2,
(c) expanded version of x(t) by a factor of 2.

In discrete-time case, we write:

y[n] = x|kn], k>0
Which is defined only for integer values of k.

If k>1, then some values of the discrete-time signal y[n] are lost, as

illustrated in figure 11 for k = 2.
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x[n] yln] = x[2n]
!
T.TTTMMH S R N
6 -5 432101 2 3 45 6 -3 -2 -1 () 1 2 3
(a) (b)
Figure 10: Effect of time scaling on a discrete-time signal: (a) discrete-time signal x[n], and (b) compressed version of x[n] by a
factor of 2, with some values of the original x[n] lost as a result of the compression.
Reflection:
Let x(t) represents a continuous-time signal.
Let y(t) denote the signal obtained by replacing time ‘t’ by ‘-t’, as shown by:
y(t) = x(=1)
The signal y(t) represents a reflected version of x(t) about the amplitude
axIs.
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\
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(b} {b)
Flgure11 (a) A continuous-time signal x(t); (b) its reflection, x{—1), about Figure 12 (a) A discrete-time signal x[n]; (b) its reflection, x[—n}, about
t = 0. n =0,
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The tollowing cases are ot special interest. -

Even Signals: for which we have X(—t) = x(t) for all ‘¢’; that is, an
even signal 1s the same as its reflected version.

Odd Signal: for which we have x(=t) = —x(t) for all ‘’; that is, an
odd signal is the negative of its reflected version.

Similar observation apply to discrete-time(DT) signz

Example 7:

Consider the triangular pulse X(t) shown in figure 13(a).

Find the reflected version of x(t) about the amplitude axis. -} 0 T,
Figure 13(a) Continuous-Time Signal x(f)
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2 Solution: Q

Replacing the independent variable t” in x(t), with -t’, we get the result

y(t) = x(—t) shown in figure 13(b).
y(t) = x(-t)
Note that: for this example, we have:

x(t)=0fort<-T;andt>T,

Correspondingly, we find that:

-T 0 T
yt)=0fort>T;andt < -T, : !
Figure 13(b) Reflected Version of x(t) in fizure
13(a) about Amplitude Axis
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Example 8:

© * Find the composite signal y[n]| = x[n| + x[—n] for the discrete-time signal x[n] ®
defined by:
ol n=1
0 n=0and|n|>1

hon==landn=1
0 n=0and |n| >1

Answer: for it y[n] = 0 for all integer values of n.

oyl 2 an==land =1
ar L = n—Gand ] > 1
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Time Shifting:

Let x(t) denote a continuous-time signal.

The time-shifted version of x(t) is defined by:
y(t) = x(t —t,)
Where t, is the time shift.

If t, > 0, the waveform representing x(t) is shifted intact/whole to
the right, relative to the time axis.

If t, < 0, it is shifted to the left.
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‘Example 9:

3 Figure 14(a) shows a rectangular pulse x(t) of unit amplitude and unit -
duration. Find y(t) = x(t — 2). . y(t) = x(t - 2)
Solution: 10 | 10 } el
In this example, the time shift £, equals 2 _ r r
time units we get the rectangular pulse y(t) —;—13 0 % | o 3 : ;
shown in figure 14(b). @ )

Figure 14: Time-Shifting operation.
{(a) Continuous-Time Signal in the form of a Rectangular Pulse of Amplitude

Tbe pUISe y (t) has exactly the same Shape 1.0 and Duration 1.0, Symmetric about the origin;
(b) Time-Shifted Version of x(¢) by 2 time units.

as the original pulse x(t); it is merely shifted

along the same axis.
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< In the case of discrete-time signal x|n|, we define its time-shifted version as
follows:

yln| = x[n —m]

Where the shift m must be an integer; it can be positive or negative.

Example 10:

Find the time-shifted signal y[n| = x[n + 3] for the discrete-time signal
X|n] defined by:

s n=1,2 (1, n= -1, -2
X[Tl] =4—1 = Answer: yln| =<-1, n= -4 -5
L0 = and n| > 2 0, n=-3,n< =5 andn> -1
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Precedence/Priority Rule For Time Shifting And Time
Scaling

Let y(t) denote a continuous-time signal that is derived from another

continuous-time signal x(t) through a combination of time-shifting and time-
scaling, as described here:

y(t) = x(at — b)

The relationship between y(t) and x(t) satisfies the following conditions:

y@®) =x(-b) and y <2) = x(0)

a

Which provide useful checks on y(t) in terms of corresponding values of x(t).
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To correctly obtain y(t) from x(t), the time-shifting and time-scaling
operations must be performed in the correct order.

The proper order 1s based on the fact that the scaling operation always
replaces “t” by “at”’, while the time-shifting operation always replaces “t” by

CCt_b77.

Hence the time-shifting operation is performed first on x(t), resulting in an
intermediate signal v(t) defined by:

v(t) = x(t — b)
The time-shift has replaced “t” in x(t) by t — b.
Next, the time scaling operation is performed on v(t).

This replaces “t” by “at”, resulting in the desired output:
y(t) — v(at) — x(at o b) Friday, September 25, 2020 65
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Example 11:

Consider the rectangular pulse x(t) of unit amplitude and duration of 2 time
units depicted in figure 15. Find y(t) = x(2t + 3).

x(1) _' vity=x(t+ 3) V() = v(2t)

1.0

I P 410

' 4 ! ; 'S . !
1 0 1 -4-3-2-10 -3-2-1140
(a) (b) (©)
Figure 15: the proper order in which the operations of time scaling and time shifting should be applied for the case of a
confinuous-time signal. (a) Rectangular pulse x7) of amplitude 1.0 and duration 2.0, svmmetric about the origin
(b) Intermediate pulse v(z), representing time-shifted version of x{r)
(c) Desired signal y(7), resulting from the compression of v(z) bv a factor of 2
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Suppose next that we purposely do not follow the precedence rule; that is, we
first apply time scaling, followed by time shifting.

For the given signal x(t), shown in figure 16(a), the wave forms resulting
from the application of these two operations are shown 1n figure 16(b) and (c)
respectively.

The signal y(t) so obtained fails to satisfy the condition of the equation:

y(b/a) = x(0) x(?) | x(2t) 1)

I,

i_ | 10 ......._____,_]'0

| 1
—— L | L.} 3 ; ' + t
-1 0 1 1 () l -3 -2 1 0
2 2
(a) (b) (c)

Figure 16 The incorrect way of applving the precedence rule. (a) Signal x(#). (b) Time-Scaled signal x(2¢) (c) Signal ¥(z) obtained
by shifting x(2r) by 3 time units.




Example 12:

Find y|n] = x[2n + 3] for a discrete-time signal x[n] defined by:
al n=1,2
=1 n=-1-2
(0 = and ink=2
x[n) v[n}
l.‘w 1 i
-5 4 -3 2 -l 1} -5 4 ‘ |
_¢'_"'“¢_“_‘“'¢ I I ﬁ} T p——-G— M I 1 O 1 ! f O o N
llo |2 3 [[-3-210 12
—1 -1+
(a) b (c)
' Figure for Example 12
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1.3 Elementary Signals

There are several elementary signals that feature prominently in the study of signals
and system.
The list of elementary signals includes:

Exponential and Sinusoidal Signals

Step Function

Impulse Function and

Ramp Function

These elementary signals serve as building blocks for the construction of more
complex signals.

They are also important in their own right, in that they may be used to model
physical signals that occur in nature.
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Exponential Signals

®)

A real exponential signal, in its most general form, is written as:
x(t) = Be*
Where both “B” and “a” are real parameters.
The parameter “B” is the amplitude of the exponential signal measured at t = 0.

Depending on weather the other parameter “a” is positive or negative, we may

identify two special cases:
Decaying Exponential, for which a < 0

Growing Exponential, for which a > 0
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These two forms of an exponential signal are illustrated in figure 18.

If a = 0, the signal x(t) reduces to a DC signal equal to the constant “B”.

For a physical example of an exponential signal, consider a “lossy” capacitor, as

depicted in figure 19.

The capacitor has capacitance C, and the loss is represented by shunt resistance

R.

The capacitor is charged by connecting a battery across it, and then the battery 1s
removed at t = 0.

Let V,, denote the initial value of the voltage developed across the capacitor.
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1 150 T 1
| i i | i
1100+
=1 x(1)
| oso)-
0 L[] T~ () o _
0 01 02 03 04 05 06 0.7 08 09 | 0 01 02 03 04 05 06 07 08 09 1
Time ¢ Time ¢
. Figure 19: Loosy Capacitor
(a) (b) with the loose represented
Figure 18: (a) Decaying Exponential form of Continuous-Time Signal using a = -6 and B = 5. by shunt resistance R

(b) Growing Exponential form of Continuous-Time Signal using a=5and B=1.
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From figure 19 we readily see that the operation of the capacitor for t = 0 1s

described by:
RC—v(t) + v(t) = 0

Where v(t) is the voltage measured across the capacitor at time .
The above equation 1s a differential equation of order one.
Its solution is given by:
v(t) = Voe~/RC

Where the product term RC plays the role of a time-constant.
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These equation shows that the voltage across the capacitor decays
exponentially with time at a rate determined by the time constant RC.

The larger the resistance R (1.e. the less lossy the capacitor), the slower will
be the rate of decay of v(t) with time.

In discrete-time it s common practice to write a real exponential signal as:

%lnl = Bl

The exponential nature of this signal is readily confirmed by defining:

r =e%

For some 0.
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Figure 20 illustrates the decaying and growing forms of a discrete-time
exponential signal corresponding to 0 < r < 1 and r > 1, respectively.

This is where the case of discrete-time exponential signals is distinctly
different from continuous-time exponential signals.

Note that: when r < 0, a discrete-time exponential signal assume alternating
signs.

The exponential signals shown in figures 18 and 20 are real valued

It 1s possible for an exponential signal to be complex-valued.
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Figure 20: (a) Decaying Exponential form of Discrete-Time Signal
(b) Growing Exponential form of Discrete-Time Signal
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The mathematical forms of complex exponential signals are the same as those
shown in equations:

x(t) = Be% and x[n] = Br™
With some differences explained here.

In the continuous-time case, the parameter “B” or parameter “a” or both
assume complex values.

Similarly. in discrete-time case. the parameter “B”’ or parameter “t”” or both
Y7 b}
assume complex values.

Two commonly encountered exambples of complex exponential sionals are
Vs P P p =
eJ®t 104 ejQ"
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SINUSOIDAIL SIGNAL

The continuous-time version of a sinusoidal signal, in its most general form, may be
written as:

x(t) = A * cos(wt + D)
Where:
A is the amplitude
w 1s the frequency in radians per second and
@ is the phase angle in radians
Figure 21(a) presents the wave form of a sinusoidal signal for A = 4 and ® = + /6

A sinusoidal signal 1s an example of a periodic signal, the period of which is:

_Zn
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I
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Time #
Figure 21(a): Sinusoidal Signal A*cos (wt+®@) with phase ®=+ n/6 radians
5 S
2«
. ) U L
__"'3. E - F A — R | EE——— == ___E_ SV - A — S — -
U 0.1 0.2 0.3 04 0.5 0.6 0.7 .8 0.9 1
' Time ¢t
Figure 21(b): Sinusoidal Signal A*sin (wt+®) with phase ®=+ n/6 radians
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the above equation to write:
x(t+T)=A*cos(w(t+T) + D)
= A * cos(wt + wT + D)
= A x cos(wt + 2 + D)
= A * cos(wt + D)
= x(t)

Which satisties the defining condition of a periodic signal.
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We may readily prove the periodicity property of a sinusoidal signal by using
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To illustrate the generation of a sinusoidal signal, consider the circuit of
fioure 22 consisting of an inductor and capacitor connected in parallel.

It is assumed that the losses in both components of the circuit are small

enough for them to be considered “ideal”. y
(1) = C — vir)

The voltage developed across the capacitor at time dt
t = 0is equal to V. i _
The operation of the circuit in figure 22 for t = 0 vy §L /C
is described by: -
d2 Figure 22: Parallel LC
LC —U(t) It U(t) =0 circuit
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Where: Cotit

v(t) is the voltage across the capacitor at time t.
C is the capacitance of the capacitor,
L. is the inductance of the inductor
The above equation 1s a differential equation of order two.

Its solution 1s given by:

v(t) =V, cos(w,t), t=>0
Where w,, 1s the natural angular frequency of oscillation ot the circuit:
1
TP ey
VLC
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The equation for instantaneous voltage, v(t) = V, cos(w,t), describes a

sinusoidal signal of amplitude A = V,,, frequency W = w, and phase angle
d = 0.

Consider next the discrete-time version of a sinusoidal signal, written as:
x[n] = A * cos(Qn + D)
The period of a periodic discrete-time signal is measured in samples.

Thus for x[n] to be periodic with a period of N samples, say, it must satisfy
the condition of x|n] = x[n + N] for all integer “n” and some integer “N”’.
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Substituting n + N for n in the above equation yields:
x[n+ N] = A % cos(Qn + QN + )

For the condition of periodic signal to be satisfied, in general, we require that:
QN =2mm  radians

2mtm radians . o
or = integer m,
N cycle g

The important point to note here is that, unlike continuous-time sinusoidal
signals, not all discrete-time sinusoidal systems with arbitrary values of () are
periodic.
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Specifically, for the discrete-time
sinusoidal signal described in:
x[n] = A * cos(Qn + D)
to be periodic, the angular frequency
() must be a rational multiple of 27

as indicated in:

2TTm
=
N

Figure 23 illustrates a discrete-time

1 1 T T T

0.8
0.6+
0 o 9

0.4}
0.2}

x(n] @lt—o— ot i B

-0.2

!

-0.4

~06|

-0.8[

C ¢ -

D WA RN N s
9% T8 % -2 2 0 2 1 & 8

Time n
Figure 23: Discrete-Time Sinusoidal Signal

sinusoidal signal for A =1,® = 0and N = 12.
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Example 13:

A pair of sinusoidal signals with a common angular frequency is defined by:
x1[n] = sin[57n] and x,[n] = V3cos[5nn]

Specify the condition which the period N of both x4[n] and x,[n] must
satisty for them to be periodic.

Evaluate the amplitude and phase angle of the composite sinusoidal signal:
ylnl] = x1In] + x;[n]

Solution:

The angular frequency of both x4 [n] and x,[n] is:
Q2 = 5S5mtradians/cycle
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Solving for the period N:
 Zmm Z2mm | 2m

Q 57 5
For x;[n] and x,[n] to be periodic, their period N must be an integer.

This can only be satisfied for m = 5, 10, 15, ... which results N = 2, 4,6, ...

We wish to express y|n| in the form:
yln] = A * cos(Qn + P)

Recall the trigonometric identity:

A *x cos(Qn + ®) = A4 * cos(QQn) * cos(P) — A * sin(QQn) * sin(P)
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Identifying €2 = 57, we see that the right-hand side of this identity is of the
same form as x{[n] + x,[n].
We may therefore write:
Asin(®) = -1 and Acos(®) =+/3
FHence:

sin(®)  Amplitude of x;[n] -1

cos(®) Amplitude of x,[n] /3
For which we find that ® = — /6 radians.

tan(d) =
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Similarly, the amplitude A is given by:

A = /(Amplitude of x;[n])2+(Amplitude of x,[n])2=V1 + 3 = 2
Accordingly, we may express y[n] as: y[n] = 2cos(5nn — n/6)

Example 14: Consider the following sinusoidal signals. Determine whether
each x|n] is periodic, and if it is, find its fundamental period.

xln] = 5sin{2n]

x[n] = 5cos[0.27n]

x[n] = 5 cos|67n]

x[n] = 5sin[67n/35] AN
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Answer:

(a) Non-periodic (b) Periodic, fundamental period = 10. (c) Periodic,
fundamental period = 1. (d) Periodic, fundamental period = 35.
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REIATION BETWEEN SINUSOIDAL AND
COMPLEX EXPONENTIAL SIGNALS

Consider the complex exponential e/ 0

Using Euler’s identity, we may expand this term as:
/9 = cos0 + jsin®

This result indicates that, we may express the continuous-time sinusoidal

signal of:
x(t) = A * cos(wt + D)

as the real part of the complex exponential signal:

Be/®t
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Where B is itself a complex quantity defined by:

B= Aels
That 1s, we may write:

A * cos(wt + ®) = Re{Be’/*t}

Where Re{ } denotes the real part of the complex quantity enclosed inside the
braces.

We may readily prove this relation by noting that:
Be/®t = Ae/Pel0t
— AeJ(@t+P)

= A cos(wt + @) + jAsin(wt + D)
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Previously the sinusoidal signal 1s defined in terms of a cosine function.

Of course, we may also define a continuous time sinusoidal signal in terms of
a sine function, as shown by:

x(t) = Asin(wt + ®)

Which is represented by the imaginary part of the complex exponential signal
Beltl
That 1s, we may write:

Asin(wt + ®) = Im{Be’/®t}

Where Im{ } denotes the imaginary part of the complex quantity enclosed
inside the braces.
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The sinusoidal signal A sin(wt + @) differs from that of A cos(wt + ®) by
a phase shift of 90°.

That is, the sinusoidal signal A cos(wt + @) leads the sinusoidal signal
Asin(wt + @), as illustrated in figure 21 for @ = 1 /6.

Similarly, in the discrete-time case we may write:
Acos(Qn + @) = Re {BejQ”} and Asin(Qn + ®) =Im {BejQ”}

Where B is defined in terms of A and ® by B = Ae’/®.
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Figure 24 shows the two dimensional representation of complex exponential

el 0. ) = n/4 andn=0,1,---,7.

The projection of each value on the real axis is cos(Qn), while the projection
on the imaginary axis is sin(Qn).
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Imaginary axis

Unit circle

Real axis

Figure 24: Complex plane, showing eight points uniformly

distributed on the unit circle
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Figure 235: Exponentially damped sinusoidal signal E_utsin(mt ic (I’)

witha > 0
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EXPONENTIAILLY DAMPED SINUSOIDAL
SIGNAL

The multiplication of a sinusoidal signal by a real-valued decaying exponential
sighal results in a new signal referred to as an exponentially damped

sinusoidal signal.

Specifically, multiplying the continuous-time sinusoidal signal Asin(wt + @)

by the exponential e ~*? results in the exponentially damped sinusoidal signal:

x(t) = Ae " *sin(wt + D), o >0
Figure 25 shows the wave form of this signal for A = 60,a = 6 and @ = 0.

€C. )
t

For increasing time “t”, the amplitude of the sinusoidal oscillations decreases

in an exponential tashion, approaching zero for infinite time.
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To illustrate the generation of an exponentially damped sinusoidal signal,
consider the parallel circuit of figure 26, consisting of a capacitor of
capacitance C, an inductor of inductance L, and a resistor of resistance R.

The resistance R represents the combined effect of losses associated with the
inductor and the capacitor. | !
7 f v(rydr

Let V, denote the voltage developed across the capacitor
L

at time £ =0 + C%l

The operation of the circuit in figure 26 1s described by: v® <1 —C R

d
C=v(t) +-v(t) + 1 [ v(Ddr =0 ,

Figure 26: Parallel LCR
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@

Where v(t) is the voltage across the capacitor at time £ = 0.

The above equation 1s an integro-differential equation.

Its solution is given by:

i) — Vet il cnsia D)

Where:

Wy

\

1 i
EG 4C4R<

In the last equation it 1s assumed that 4C Re o |
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Comparing x(t) = Ae~ % sin(wt + ®) and v(t) = Ve t/?RCcos(w,t);
we have:

A=V o= IRC: W = W, and 48] — /A

Returning to the subject matter at hand, the discrete-time version of the
exponentially damped sinusoidal signal is described by:

x|n] = Br'*sin[Qn + O]

For the signal to decay exponentially with time, the parameter r must lie in the
range 0 <71 < 1.
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