

Signals and Systems Analysis

Course Code: (ECEG-2121)

Instructor: Abrham Mesfin(MSc.)

email: abrom321@gmail.com

Course title: Signals and Systems Analysis

ECTS (Credit): 6hr (4hr)

Pre-requisite: Applied Math III

Academic Year: 2019/20

Course Description

- Classification of signals and their representation as function of time and frequency domain; Fourier Series & Fourier transform of periodic and non-periodic signals and their properties; Laplace transform of signals:- properties and their application; representation of systems:- classification, convolution integral and system modeling using impulse
- Analysis of LTI systems:- using differential equations solution, frequency response; discrete time signals and systems:- sampled data (sequences), convolution sum, Z-transform, system analyses in Z-domain, system function and their realization.

response & transfer function;

Course Objectives

Students who successfully complete the course will be able to:

- Understand and apply the representation different signals,
- Classification characterization different signals
- analysis of signals and systems in time and frequency domain
- properties and their application; representation of systems
- Representation of frequency response; discrete and continuous time signals and systems

Text Book:

 Signals and Systems, Second Edition, Simon Haykin and Barry Van Veen, John, Wiley & Sons, 2003

References:

- Signals and systems, A.P. Oppenheim, A.S. Willsky, I.T. Young, 2001
- Roberts: Signals and Systems: Analysis using Transform Methods and MATLAB, MJ, International Edition, McGraw Hill, 2003.
- Philip Denbigh: System Analysis and Signal, 1988
- **** AMU AmiT Digital Library Sources (additionally you can referee)
 - drs.amu.edu.et
 - ils.amu.edu.et

Evaluation and assessment

Evaluation Description		Weight/100%	Date
Lecture	Test I	15%	
	Assignment I	10%	
	Test II	20%	
	Quiz	5%	
	Final Exam	45%	

Chapters

Chapter-1 Introduction to Signal and System

Chapter-2 Time Domain Representations for LTIS

Chapter-3 Fourier Representations for Signals

Chapter-4 Laplace Transform

Chapter-5 Z-transform

Chapter 1

Introduction to Signals and Systems

1.1 Introduction to Signal and System

• Signal and System analysis is a fundamental course for electrical, electronics computer engineering filed.

Definition of terms

- Mathematical model
- Model
- Signal
- System

Cont.

Mathematical Model: is representation of a system or real world problem using mathematical expression(language). and

The process of developing mathematical model is known as mathematical modeling.

Model: is a simplified form of representation of a system or real world events using:

- Mathematical equation
- Graphs
- Drawing
- Prototype

Cont.

Signal: is an abstraction of any measurable quantity that is a function of one or more independent variables such as **time(t)** and **space(x,y,z)which intended conveys information.** Or

• signal: is a set of information of data.

A signal: is formally defined as a function of *one or more variables*, which carries information on the nature of physical phenomena.

Example of Signal

Electrical signal

Voltage v(t) and Current I(t)

Mechanical signal

Sound signal

Light signal

Image

When a signal depends on *a single variable*, the signal is said to be *one-dimensional (single valued) signal*.

• A **speech signal:** is an example of **a one dimensional** signal whose amplitude varies with time, depending on the spoken word and who speaks it.

When **the function depends** on **two or more variables**, the signal is said to be *multidimensional signal*.

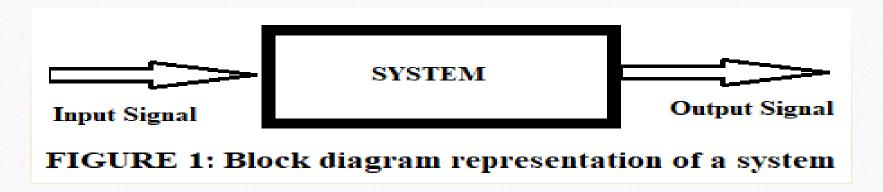
- An image is an example of a two dimensional signal, with the horizontal and vertical coordinates of the image representing the two dimension.
- In this course we focus on signals involving *a single independent* variable.

System

A system is formally defined as an entity that manipulates one or more signals to accomplish a function, thereby yielding new signals. or

System: is defined as interconnection of one or more networks in a designed manner to perform desired task.

• The interaction between a system its associated signals is illustrated schematically in **figure 1**.



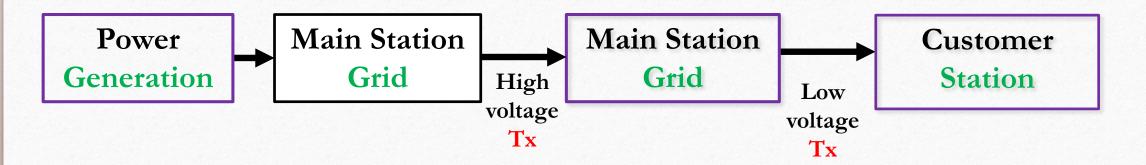
The descriptions of the input and output signals naturally depends on the intended application of the system:

- In an automatic speaker recognition system, the input signal is a speech (voice) signal, the system is a computer and the output signal is the identity of the speaker
- In a communication system, the input signal could be a speech signal or computer data, the system itself is made up of the combination of a *transmitter*, *channel and receiver* and the output signal is an estimate of the original message signal.

AMiT-ECE

☐ Electronic Communication System

☐ Electrical Power System



1.2 Classification of Signals

In this course we will restrict our attention to *one-dimensional signals* defined as single valued functions of time.

"single valued" means that for every instant of time there is a unique value of the function.

- This value may be a real number, in which case we speak of *a real* valued signal, or
- it may be a complex number, in which case we speak of a complexvalued signal.

CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS

In either case, the independent variable, namely time, is real valued.

We may identify **five methods of classifying signals** based on different features.

CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS

- Continuous –Time and Discrete-Time Signals
- 2. Even and Odd Signals
- 3. Period Signal and Non-Periodic Signal
- Deterministic Signals and Random Signals
- Causal and Non-causal Signal
- 6. Energy Signals and Power Signals

AMiT-ECE

1. Continuous –Time and Discrete-Time Signals

Continuous-time signals

- A signal x(t) is said to be a continuous-time signal if it is defined for all time 't'.
- Figure 2(a), represents an example of a continuous-time signal whose amplitude or values varies continuously with time.
- Continuous-time signals arise naturally when a physical waveform such as an acoustic (audio) wave or light wave is converted in to an electrical signal.

CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS

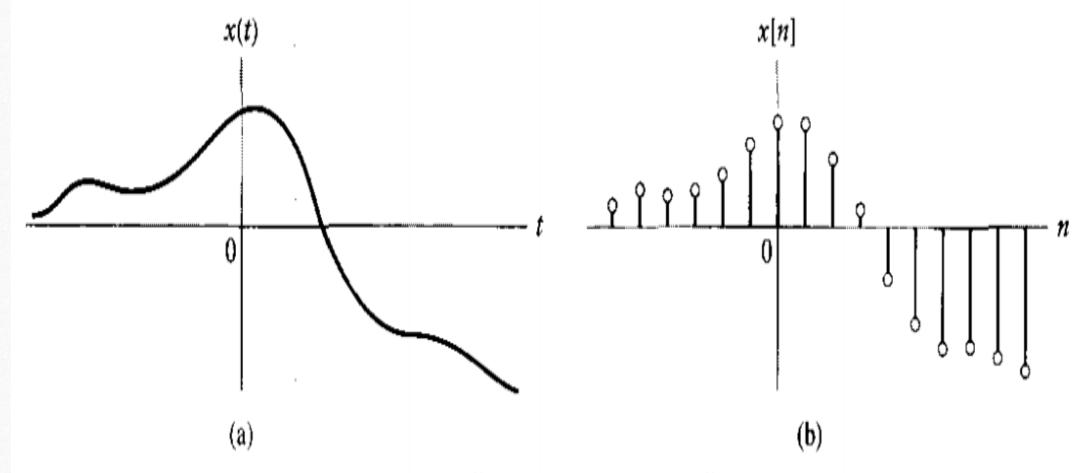


Figure 2: (a) Continuous-time signal x(t) (b) Representation of x(t) as a discrete-time signal x[n]

- The conversion is effected by means of a transducer; examples include the microphone, which converts sound pressure variations in to corresponding *voltage or current variations*, and
- The photocell, which does the same for *light-intensity variations*.

Discrete-time

- In the case of DT-signal **x**[n] is defined only at discrete instant of time.
- Thus, in this case, the independent variable has discrete values only, which are usually uniformly spaced, see Figure 2(b) is DT-Signal.
- A discrete-time signal is often derived from a continuous-time signal by sampling it at a uniform rete.

- Let T denote the sampling period and 'n' denote an integer that may assume positive and negative values.
- Sampling a continuous-time signal x(t) at time t = nT yields a sample of values x(nT).
- For convenience of presentation, we write:

$$x[n] = x(nT);$$
 $n = 0, \pm 1, \pm 2, \pm 3, \cdots$

• Thus, a discrete-time signal is represented by the sequence numbers

$$\cdots$$
, $x[-2]$, $x[-1]$, $x[0]$, $x[1]$, $x[2]$, \cdots

• Such a sequence of numbers is referred to as a time series, written as:

$$\{x[n], n = 0, \pm 1, \pm 2, \cdots\}$$
 or simply $x[n]$

the latter natation is used through out this course.

- Throughout this course, we use the symbol:
 - $\geq't'$ to denote time for a CT-signal and the symbol 'n' for a DT-signal.
 - Parenthesis (.) are used to denote continuous-valued quantities while bracket [.] are used to denote discrete-valued quantities.

2. Even and Odd Signals

• A continuous-time signal x(t) is said to be an even signal if it satisfies the condition:

$$x(-t) = x(t)$$
 for all 't'

• A continuous-time signal x(t) is said to be an odd signal if it satisfies the condition:

$$x(-t) = -x(t)$$
 for all 't'

- In other word;
 - Even signals are symmetric about the vertical axis or time origin, where as odd signals are anti-symmetric (asymmetric) about the time origin.

Notice: Similar remarks apply to discrete-time signals.

Example 1: Develop the Even/Odd decomposition of a general signal x(t) by applying the definition of even and odd function:

Solution: Let the signal x(t) be expressed as the sum of two components $x_e(t)$ and $x_o(t)$ as follows:

$$x(t) = x_e(t) + x_o(t)$$

• Define $x_e(t)$ to be even and $x_o(t)$ to be odd; that is:

$$x_e(-t) = x_e(t)$$
 and $x_o(-t) = -x_o(t)$

• Putting t = -t; in the expression for x(t); we may then write

$$x(-t) = x_e(-t) + x_o(-t)$$
$$x(-t) = x_e(t) - x_o(t)$$

• Solving for $x_e(t)$ and $x_o(t)$, we thus obtain:

$$x_e(t) = \frac{x(t) + x(-t)}{2}$$
 and $x_o(t) = \frac{x(t) - x(-t)}{2}$

- The above definition of *even and odd* signals assume that *the signals are real* valued.
- In the case of *complex-valued signal*, we may speak of *conjugate symmetry*.
- A complex-valued signal is said to be **conjugate symmetric** if it satisfies the condition:

$$x(-t) = x^*(t)$$

Where the "asterisk" denotes complex conjugate.

Let;

$$x(t) = a(t) + jb(t)$$

Where:

- $\geq a(t)$ and b(t) are the real and imaginary part of x(t) respectively
- is the square root of -1
- The complex conjugate of x(t) is:

$$x^*(t) = a(t) - jb(t)$$

- From the previous equation it follows that: a complex values signal x(t) is conjugate symmetric if its real part is even and its imaginary part is odd.
- Notice: similar remark applies to a discrete-time signal.

Example 2: consider the pair of signals shown in figure 3. Which of these signals is even and which one is odd?

CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS

Example 3: The signals $x_1(t)$ and $x_2(t)$ shown in *figure 3 (a) and (b)* constitute the real and imaginary parts of a complex-valued signal x(t).

What form of symmetry does x(t) have?

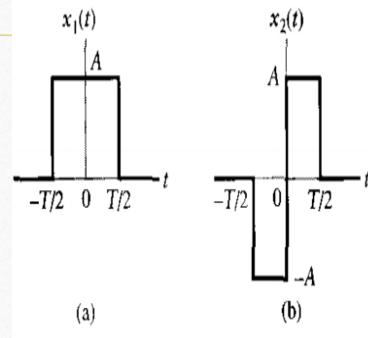


Figure 3: Examples of Continuous-Time Signal

AMiT-ECE

3. Periodic Signal and Non-Periodic Signal

• A periodic signal x(t) is a function that satisfies the condition:

$$x(t) = x(t+T)$$
 for all t

Where: T is a positive constant

- Clearly, if this condition is satisfied for $\mathbf{T} = T_o$, say, then it is also satisfied for $T = 2T_o, 3T_o, 4T_o, \cdots$.
- The smallest value of T that satisfies the above equation is called the fundamental period of x(t).
- The reciprocal of the fundamental period T is called the fundamental frequency(f) of the periodic signal x(t);

We thus formally write;

$$f=\frac{1}{T}$$

- The frequency f is measured in hertz (Hz) or cycles per second.
- The angular frequency, measured in radians per second, is defined by:

$$\boldsymbol{\omega} = \frac{2\pi}{T} = 2\pi f$$

- Since there are 2π radians in one complete cycle.
- To simplify the terminology, ω is often referred to simply as frequency.

- Any $signal\ x(t)$ for which there is no values of T to satisfy the condition of periodic signal is called $aperiodic\ or\ non-periodic\ signal$.
- Figures 4 (a) and (b) presents examples of periodic and non-periodic signals, respectively.
- The periodic signal shown here represents a square wave of amplitude A = 1 and period T and the non-periodic signal represents a rectangular pulse of amplitude A and duration T_1 .

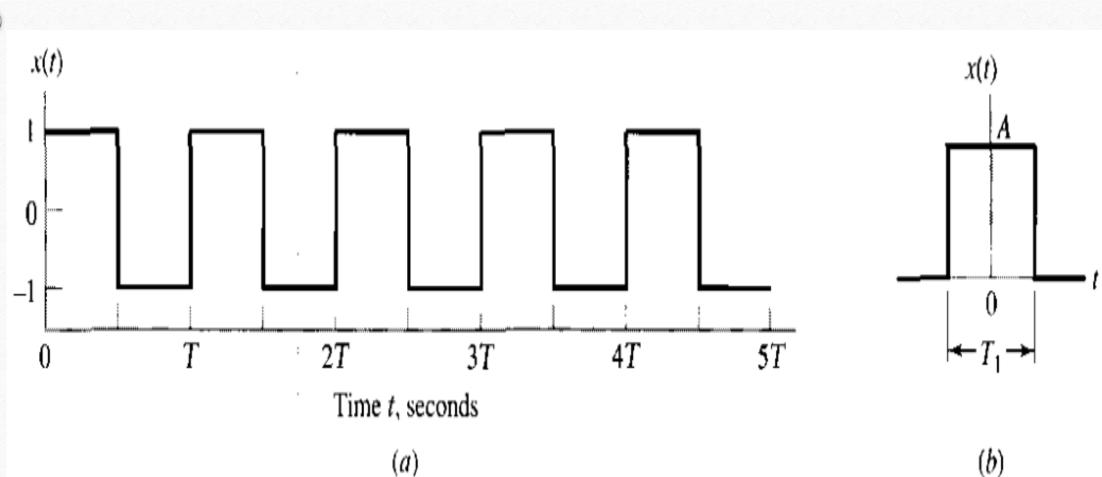


Figure 4: (a) Square wave with amplitude A = 1, and period T = 0.2 s (b) Rectangular pulse of amplitude A and duration T1

AMiT-ECE

Example 4:

Figure 5 shows a triangular wave. What is the *fundamental frequency* of this wave? Express the fundamental frequency in units of **Hz or rad/s**.

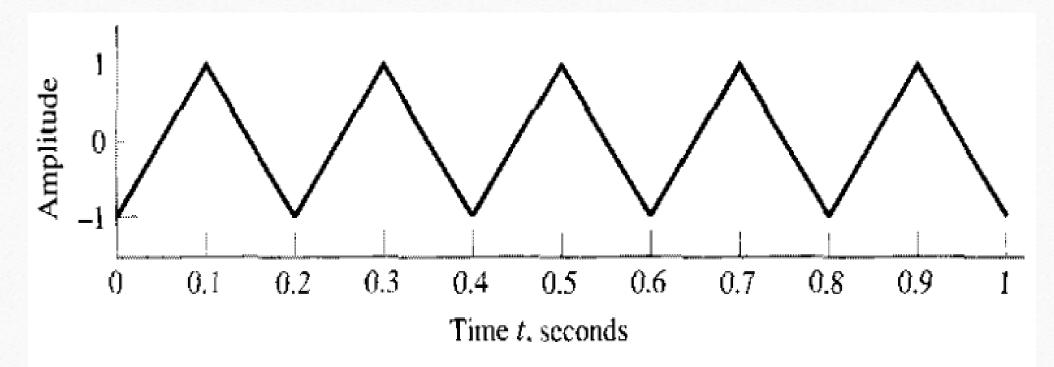


Figure 5: Triangular Wavealtering between - 1 and + 1 with fundamental period of 0.2 second

- We next consider the case of *discrete-time signals*.
- A discrete time signal x[n] is said to be periodic if it satisfies the condition:

$$x[n] = x[n+N]$$
 for all integers n

Where N; is a positive integer.

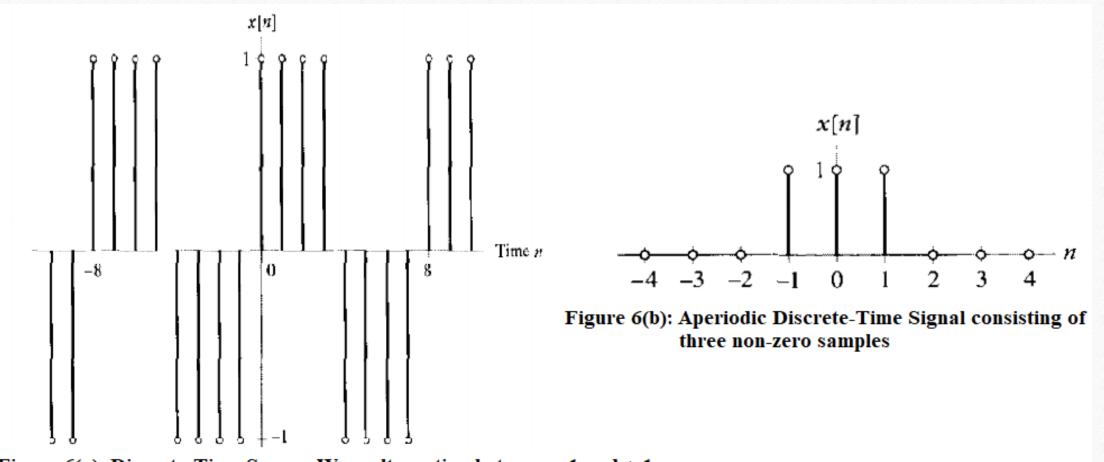
- The smallest value of *integer N* for which the above equation is satisfied is called fundamental period of *the discrete-time signal* x[n].
- The fundamental angular frequency, or simply fundamental frequency of x[n] is defined by:

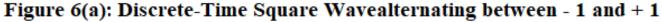
$$\Omega = \frac{2\pi}{N} \text{ (in radians)}$$

- The differences between the defining equations for continuous-time and discrete-time periodic signals should be carefully noted.
 - The earlier equation applies to a periodic continuous-time signal whose fundamental period *T has any positive value*.
 - On the other hand, the later equation applies to a periodic discrete-time signal whose fundamental period N can only assume a positive integer value.
- Two examples of **discrete-time signals** are shown in *Figure 6 (a)* and **(b)** below. The signal in **Fig. 6(a)** is periodic where as that of **Fig. 6(b)** is aperiodic.

Example 5: What is the fundamental frequency of the discrete –time

square wave shown in Fig. 6(a)





AMiT-ECE SIGNALS AND SYSTEMS

4. Deterministic Signals and Random Signals

- A deterministic signal is a signal about which there is no uncertainty with respect to its value at any time.
- Accordingly, we find that deterministic signals may be *modeled as* completely specified function of time.
 - The square wave shown in *figure 4(a)* and the rectangular pulse shown in shown in *figure 4(b)* are deterministic signals, and so are the signals shown in figure 6(a) and (b).
- A random signal is a signal about which there is uncertainty before its actual occurrence.

CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS

- Such a signal may be viewed as belonging to an **ensemble(collective) or group** of signals, with each signal in the ensemble having a different wave form.
- *Moreover*, each signal within the ensemble has certain probability of occurrence.
- The ensemble of such signals is referred to as a random process.
- The "noise" generated in the amplifier of *a radio or television receiver* is an example of *a random signal*. Its amplitude fluctuates between positive and negative values in a completely random fashion.

5. Energy Signals and Power Signals

- From examples provided so far, we see that signals may represent a broad variety of phenomena.
- In many, but not all, applications, the signals we consider are directly related to physical quantities capturing *power and energy* in a physical system.
- For example, if v(t) and i(t) are, respectively, the voltage and current across a resistor with resistance R, then the *instantaneous power* dissipated in this resistor is defined by:

$$p(t) = v(t) * i(t) = \frac{1}{R}v^{2}(t) = Ri^{2}(t)$$

- In both cases, the instantaneous power p(t) is proportional to the squared amplitude of the signal. Further more, for a resistance R of 1Ω ,
- the two equations take on the same mathematical form.
- The total energy expended over the time interval $t_1 \le t \le t_2$ is:

$$E(t) = \int_{t_1}^{t_2} p(t)d_t = \int_{t_1}^{t_2} \frac{1}{R} v^2(t)d_t$$

• The average power over this time interval is:

$$p_{av} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p(t) d_t = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{1}{R} v^2(t) d_t$$

• In signal analysis, it is customary to define power in terms of a 1Ω resistor, so that, regardless of whether a given signal x(t) represents a voltage or a current, we may express the instantaneous power of the signal as:

$$p(t) = x^2(t)$$

• Based on this convention, we define the total energy of the continuoustime signal x(t) as:

$$E = \lim_{T \to \infty} \int_{-T/2}^{T/2} x^2(t) d_t = \int_{-\infty}^{\infty} x^2(t) d_t$$

• And its average power as:

$$P_{av} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x^2(t) d_t$$

• From the last equation, we readily see that the average power of a periodic signal is x(t) of fundamental period T is given by:

$$P_{av} = \frac{1}{T} \int_{-T/2}^{T/2} x^2(t) d_t$$

- The square root of the average power p_{av} is called the root meal-square (rms) value of the signal x(t).
- In the case of discrete-time signal x[n], the integrals are replaced by corresponding sums. Thus the total energy of x[n] is defined by:

$$E = \sum_{n=-\infty}^{\infty} x^2[n]$$

And its average power is defined by:

$$P_{av} = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=-N}^{N} x^{2}[n]$$

Here again, the average power in *a periodic signal* x[n] with fundamental period N is given by:

$$P_{av} = \frac{1}{N} \sum_{n=0}^{N-1} x^2 [n]$$

A signal is referred to as **an energy signal**, if and only if the total energy of the signal satisfies the condition:

$$0 < E < \infty$$

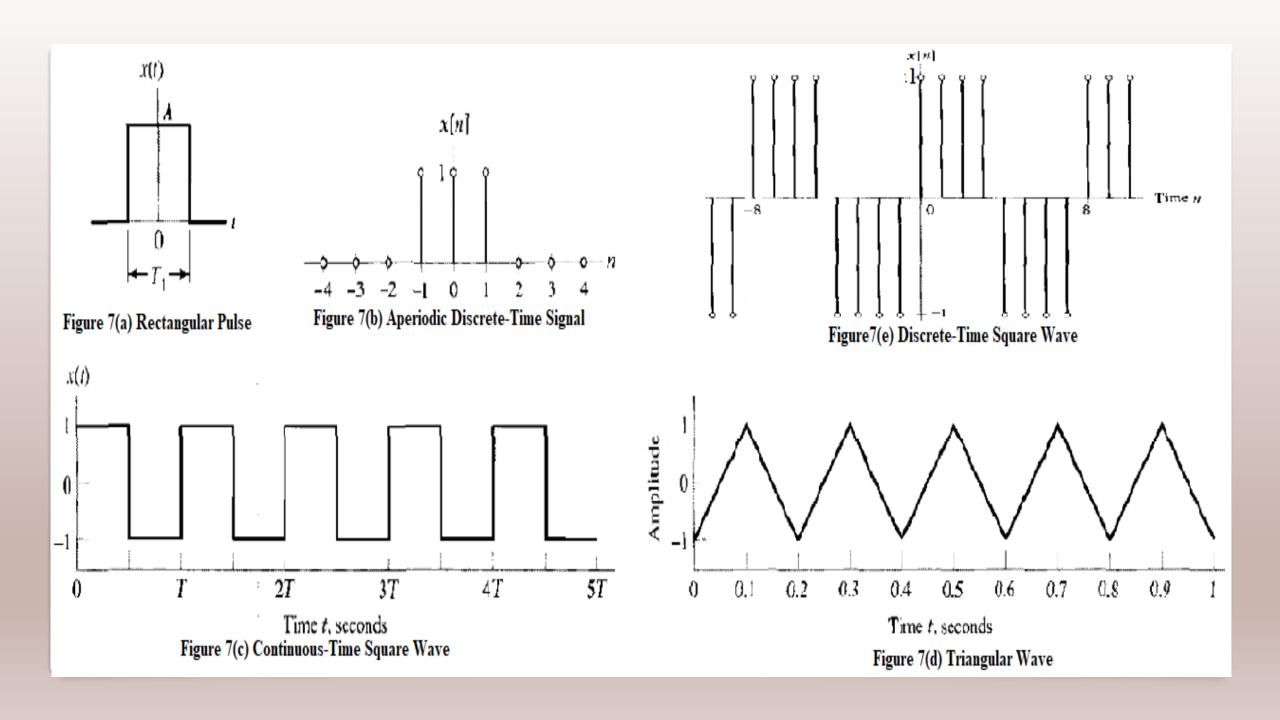
• On the other hand, it is referred to as a power signal, if and only if the average power of the signal satisfies the condition:

$$0 < P_{av} < \infty$$

- The energy and power classifications of signals are mutually exclusive.
- In particular:
 - An energy signal has zero average power, whereas a power signal has infinite energy.
 - Periodic signals and Random signals are usually viewed as power signals, where as signals that are both deterministic and non-periodic are *energy signals*.

Example 6:

- What is the total energy of:
 - a) the rectangular pulse shown in figure 7(a)?
 - b) the discrete-time signal shown in figure 7(b)?
- What is the average power of:
 - c) the square wave shown in figure 7(c)?
 - d) the triangular wave shown in figure 7(d)?
 - e) The periodic discrete-time signal shown in figure 7(e)?



1.2 Basic operations on Signals

- An issue of fundamental importance in the study of **signals and systems** is the use of *systems to process or manipulate signals.*
- This issue usually involves a combination of *some basic operations*.
- In particular, we may identify a two classes of operations; described as:
 - 1) Operations performed on dependent variables:
 - Amplitude scaling, Addition/Subtraction, Multiplication,
 Differentiation, and Integration
 - 2) Operations performed on independent variables:
 - Time scaling, Reflection, and Time shifting

1. Operations performed on dependent variables

Amplitude Scaling:

- Let x(t) denotes a continuous time signal.
- The signal y(t) resulting from amplitude scaling applied to x(t) is defined by:

$$y(t) = cx(t)$$

Where: c is the scaling factor.

According to the above equation, the value of y(t) is obtained by multiplying the corresponding values of x(t) by the scalar c.

CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS

- A physical example of a device that **performs amplitude scaling is an electronic Amplifier.**
- A resistor also performs amplitude scaling when x(t) is a current, c is the resistance and y(t) is the output voltage.
- In a similar manner, for discrete-time signals we write:

$$y[n] = cx[n]$$

Addition signals:

• Let $x_1(t)$ and $x_2(t)$ is defined by:

$$y(t) = x_1(t) + x_2(t)$$

- A physical example of a device that adds signals is **an audio mixer** which combines music and voice signals.
- In a similar manner, for discrete time signals we write:

$$y[n] = x_1[n] + x_2[n]$$

Multiplication of signals:

- Let $x_1(t)$ and $x_2(t)$ denote a pair of *continuous-time signals*.
- The *signal* y(t) resulting from the multiplication of $x_1(t)$ by $x_2(t)$ is defined by:

$$y(t) = x_1(t)x_2(t)$$

- That is, for each prescribed time 't' the value of y(t) is given by the product of the corresponding values of $x_1(t)$ and $x_2(t)$.
- A physical example of y(t) is an **AM radio signal**, in which $x_1(t)$ consists of **an audio signal plus a DC component**, and $x_2(t)$ consists of a sinusoidal signal called a carrier wave.
- In a similar manner, for discrete-time signals we write:

$$y[n] = x_1[n]x_2[n]$$

Differentiation of signal:

- Let x(t) denote a continuous-time signal.
- The derivation of x(t) with respect to time is defined by:

$$y(t) = \frac{d}{dt}x(t)$$

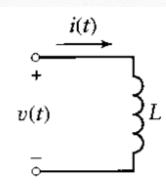


Figure 8: Inductor with current i(t), inducing voltage v(t) across its terminals

- For example, an inductor performs differentiation.
- Let i(t) denote the current flowing through an inductor of inductance L, as shown in figure 8.
- The voltage v(t) developed across the inductor is defined by:

$$v(t) = L\frac{d}{dt}i(t)$$

Integration of signal:

- Let x(t) denote a continuous-time signal.
- The integral of x(t) with respect to time 't' is defined by:

$$y(t) = \int_{-\infty}^{t} x(\tau) d_{\tau}$$

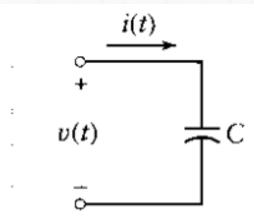


Figure 9: Capacitor with v(t) across its terminals, inducing current i(t)

Where: τ is the integration variable.

- For example, a capacitor performs integration. Let i(t) denote the current flowing through a capacitor of capacitance C, as shown in *figure 9*.
- The voltage v(t) developed across the capacitor is defined by;

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d_{\tau}$$

2. Signal operations performed on independent variables

Time Scaling:

- Let x(t) denote a continuous time signal.
- The signal y(t) obtained by scaling the independent variable, time t, by a factor 'a' is defined by:

$$y(t) = x(at)$$

- If a > 1, the signal y(t) is a compressed version of x(t).
- If 0 < a < 1, the signal y(t) is a expanded (stretched) version of x(t).
- The two operations are illustrated in figure 10 below.

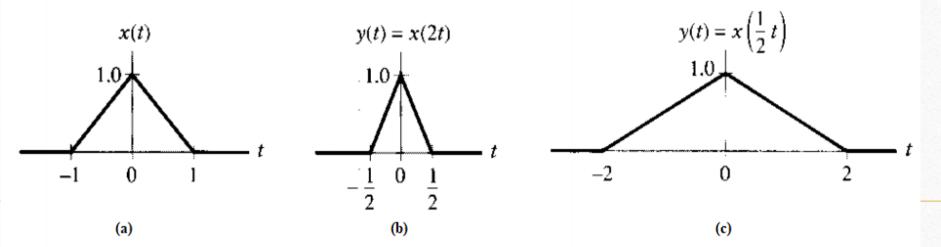


Figure 10: Time Scaling operation: (a) Continuous-Time Signal x(t), (b) compressed version of x(t) by a factor of 2, (c) expanded version of x(t) by a factor of 2.

• In discrete-time case, we write:

$$y[n] = x[kn], k > 0$$

Which is defined only for *integer values of k*.

If k>1, then some values of the discrete-time signal y[n] are lost, as illustrated in figure 11 for k=2.

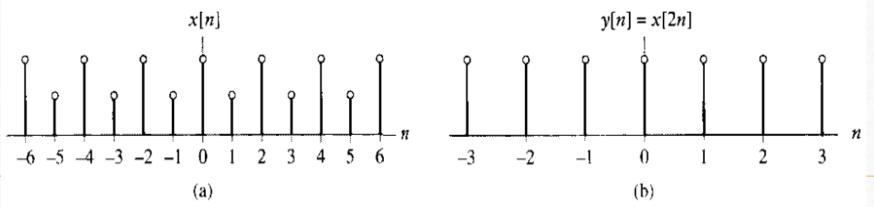


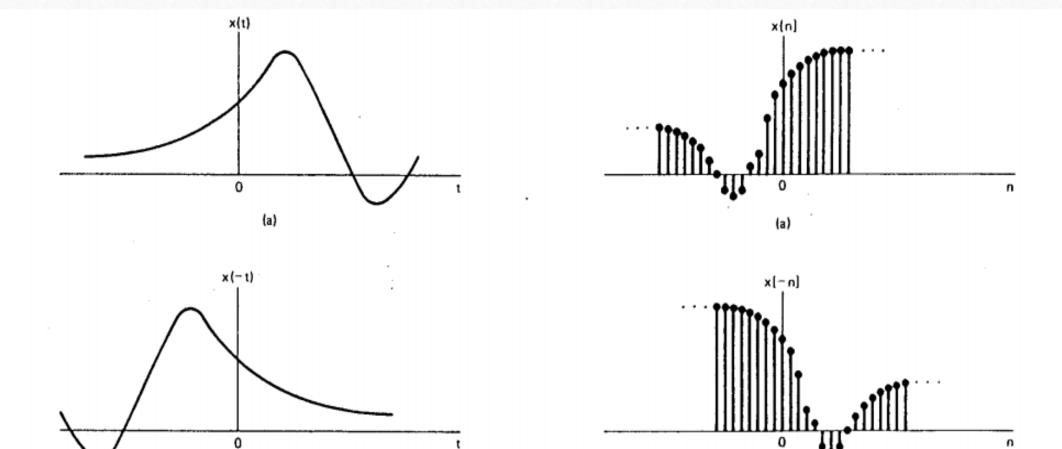
Figure 10: Effect of time scaling on a discrete-time signal: (a) discrete-time signal x[n], and (b) compressed version of x[n] by a factor of 2, with some values of the original x[n] lost as a result of the compression.

Reflection:

- Let x(t) represents a continuous-time signal.
- Let y(t) denote the signal obtained by replacing time 't' by '-t', as shown by:

$$y(t) = x(-t)$$

• The signal y(t) represents a reflected version of x(t) about the amplitude axis.



CHAPTER ONE: INTRODUCTION TO SIGNALS AND SYSTEMS

Figure 11 (a) A continuous-time signal x(t); (b) its reflection, x(-t), about Figure 12 (a) A discrete-time signal x[n]; (b) its reflection, x[-n], about t=0.

(b)

n=0.

(b)

0

- The following cases are of special interest.
 - Even Signals: for which we have x(-t) = x(t) for all 't'; that is, an even signal is the same as its reflected version.
 - Odd Signal: for which we have x(-t) = -x(t) for all 't'; that is, an odd signal is the negative of its reflected version.
- Similar observation apply to discrete-time(DT) signa

Example 7:

• Consider the triangular pulse x(t) shown in figure 13(a).

Find the reflected version of x(t) about the amplitude axis.

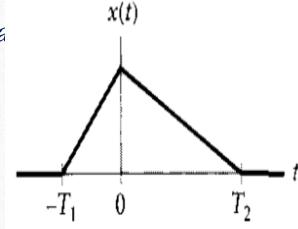


Figure 13(a) Continuous-Time Signal x(t)

Solution:

Replacing the independent variable 't' in x(t), with '-t', we get the result y(t) = x(-t) shown in figure 13(b).

Note that: for this example, we have:

$$x(t) = 0 \text{ for } t < -T_1 \text{ and } t > T_2$$

Correspondingly, we find that:

$$y(t) = 0 \text{ for } t > T_1 \text{ and } t < -T_2$$

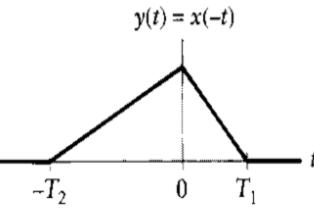


Figure 13(b) Reflected Version of x(t) in figure 13(a) about Amplitude Axis

Example 8:

• Find the composite signal y[n] = x[n] + x[-n] for the discrete-time signal x[n] defined by:

$$\underbrace{i. \quad x[n] = \begin{cases} 1 & n = 1 \\ -1 & n = -1 \\ 0 & n = 0 \text{ and } |n| > 1 \end{cases}}$$

ii.
$$x[n] = \begin{cases} 1 & n = -1 \text{ and } n = 1 \\ 0 & n = 0 \text{ and } |n| > 1 \end{cases}$$

Answer: for i: y[n] = 0 for all integer values of n.

for ii:
$$\mathbf{y}[\mathbf{n}] = \begin{cases} 2 & n = -1 \text{ and } n = 1 \\ 0 & n = 0 \text{ and } |n| > 1 \end{cases}$$

Time Shifting:

- Let x(t) denote a continuous-time signal.
- The time-shifted version of x(t) is defined by:

$$y(t) = x(t - t_o)$$

Where t_0 is the time shift.

- If $t_o > 0$, the waveform representing x(t) is shifted intact/whole to the right, relative to the time axis.
- \geq If $t_o < 0$, it is *shifted to the left*.

Example 9:

• Figure 14(a) shows a rectangular pulse x(t) of unit amplitude and unit duration. Find y(t) = x(t-2).

Solution:

In this example, the time shift t_o equals 2 time units we get the rectangular pulse y(t) shown in *figure 14(b)*.

The pulse y(t) has exactly the same shape as the *original pulse* x(t); it is merely shifted along the same axis.

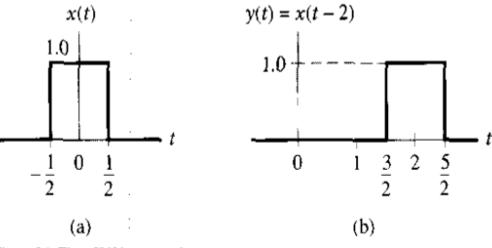


Figure 14: Time-Shifting operation.

- (a) Continuous-Time Signal in the form of a Rectangular Pulse of Amplitude 1.0 and Duration 1.0, Symmetric about the origin;
- (b) Time-Shifted Version of x(t) by 2 time units.

• In the case of discrete-time signal x[n], we define its time-shifted version as follows:

$$y[n] = x[n-m]$$

Where the shift m must be an integer; it can be positive or negative.

Example 10:

• Find the time-shifted signal y[n] = x[n+3] for the discrete-time signal x[n] defined by:

$$x[n] = \begin{cases} 1 & n = 1, 2 \\ -1 & n = -1, -2 \\ 0 & n = 0, and |n| > 2 \end{cases}$$
Answer: $y[n] = \begin{cases} 1, & n = -1, -2 \\ -1, & n = -4, -5 \\ 0, & n = -3, n < -5, \text{ and } n > -1 \end{cases}$

Precedence/Priority Rule For Time Shifting And Time Scaling

• Let y(t) denote a continuous-time signal that is derived from another continuous-time signal x(t) through a combination of time-shifting and time-scaling, as described here:

$$y(t) = x(at - b)$$

• The relationship between y(t) and x(t) satisfies the following conditions:

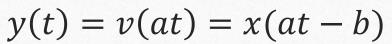
$$y(0) = x(-b)$$
 and $y\left(\frac{b}{a}\right) = x(0)$

Which provide useful checks on y(t) in terms of corresponding values of x(t).

- To correctly obtain y(t) from x(t), the time-shifting and time-scaling operations must be performed in the correct order.
 - The proper order is based on the fact that the scaling operation always replaces "t" by "at", while the time-shifting operation always replaces "t" by "t-b".
 - Hence the time-shifting operation is performed first on x(t), resulting in an intermediate signal v(t) defined by:

$$v(t) = x(t-b)$$

- The time-shift has replaced "t" in x(t) by t b.
- Next, the time scaling operation is performed on v(t).
- This replaces "t" by "at", resulting in the desired output:



Example 11:

• Consider the rectangular pulse x(t) of unit amplitude and duration of 2 time units depicted in figure 15. Find y(t) = x(2t + 3).

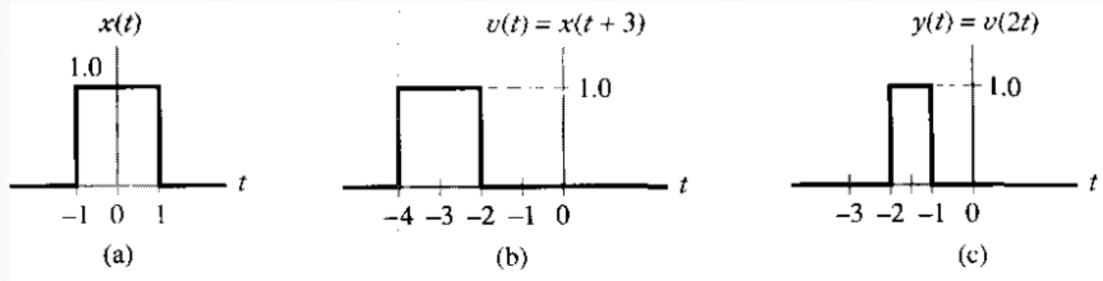


Figure 15: the proper order in which the operations of time scaling and time shifting should be applied for the case of a continuous-time signal. (a) Rectangular pulse x(t) of amplitude 1.0 and duration 2.0, symmetric about the origin

- (b) Intermediate pulse v(t), representing time-shifted version of x(t)
- (c) Desired signal y(t), resulting from the compression of v(t) by a factor of 2

- Suppose next that we purposely do not follow the precedence rule; that is, we first apply time scaling, followed by time shifting.
- For the given signal x(t), shown in figure 16(a), the wave forms resulting from the application of these two operations are shown in figure 16(b) and (c) respectively.
- The signal y(t) so obtained fails to satisfy the condition of the equation:

$$y(b/a) = x(0)$$

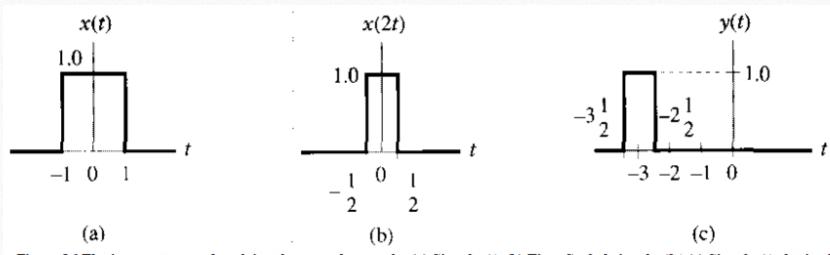
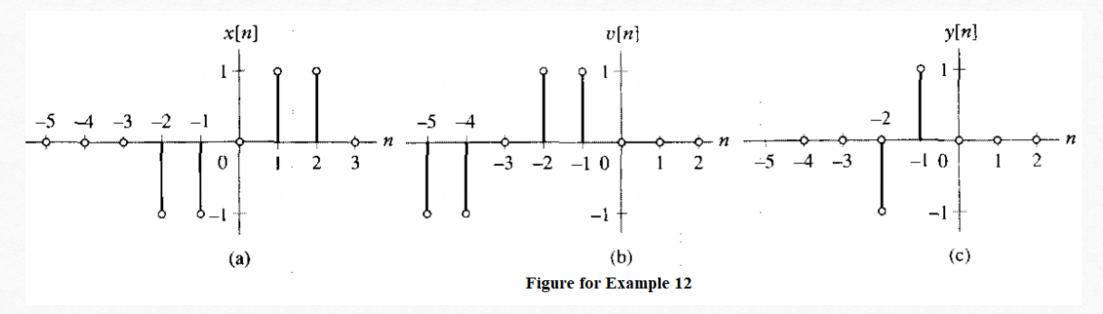


Figure 16 The incorrect way of applying the precedence rule. (a) Signal x(t). (b) Time-Scaled signal x(2t) (c) Signal y(t) obtained by shifting x(2t) by 3 time units.

Example 12:

• Find y[n] = x[2n + 3] for a discrete-time signal x[n] defined by:

$$x[n] = \begin{cases} 1 & n = 1, 2 \\ -1 & n = -1, -2 \\ 0 & n = 0, and |n| > 2 \end{cases}$$



1.3 Elementary Signals

- There are several elementary signals that feature prominently in the study of signals and system.
- The list of elementary signals includes:
 - Exponential and Sinusoidal Signals
 - > Step Function
 - Impulse Function and
 - > Ramp Function
- These elementary signals serve as building blocks for the construction of more complex signals.
- They are also important in their own right, in that they may be used to model physical signals that occur in nature.

Exponential Signals

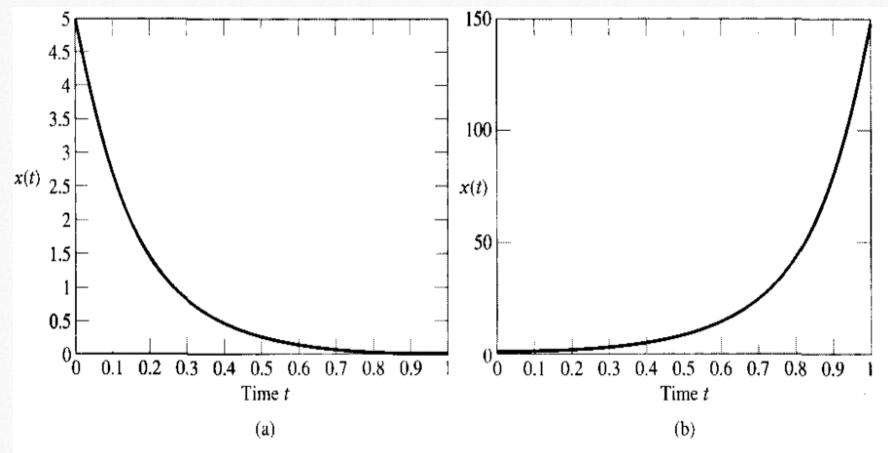
• A real exponential signal, in its most general form, is written as:

$$x(t) = Be^{at}$$

Where both "B" and "a" are real parameters.

- The parameter "B" is the amplitude of the exponential signal measured at t = 0.
- Depending on weather the other **parameter "a"** is positive or negative, we may identify two special cases:
 - Decaying Exponential, for which a < 0
 - For Growing Exponential, for which a > 0

- These two forms of an exponential signal are illustrated in figure 18.
- If a = 0, the signal x(t) reduces to a DC signal equal to the constant "B".
- For a physical example of an exponential signal, consider a "lossy" capacitor, as depicted in figure 19.
 - The capacitor has capacitance C, and the loss is represented by shunt resistance R.
 - The capacitor is charged by connecting a battery across it, and then the battery is removed at t = 0.
 - \triangleright Let V_o denote the initial value of the voltage developed across the capacitor.



 $i(t) = C \frac{d}{dt} v(t)$ v(t) C R

Figure 19: Loosy Capacitor with the loose represented by shunt resistance R

Figure 18: (a) Decaying Exponential form of Continuous-Time Signal using a = -6 and B = 5.

(b) Growing Exponential form of Continuous-Time Signal using a = 5 and $\mathbf{B} = \mathbf{1}$.

AMiT-ECE

• From figure 19 we readily see that the operation of the capacitor for $t \ge 0$ is described by:

$$RC\frac{d}{dt}v(t) + v(t) = 0$$

Where v(t) is the voltage measured across the capacitor at time t.

- The above equation is a differential equation of order one.
- Its solution is given by:

$$v(t) = V_0 e^{-t/RC}$$

Where the product term RC plays the role of a time-constant.

- These equation shows that the voltage across the capacitor decays exponentially with time at a rate determined by the time constant RC.
 - The larger the resistance R (i.e. the less lossy the capacitor), the slower will be the rate of decay of v(t) with time.
- In discrete-time it is common practice to write a real exponential signal as:

$$x[n] = Br^n$$

• The exponential nature of this signal is readily confirmed by defining:

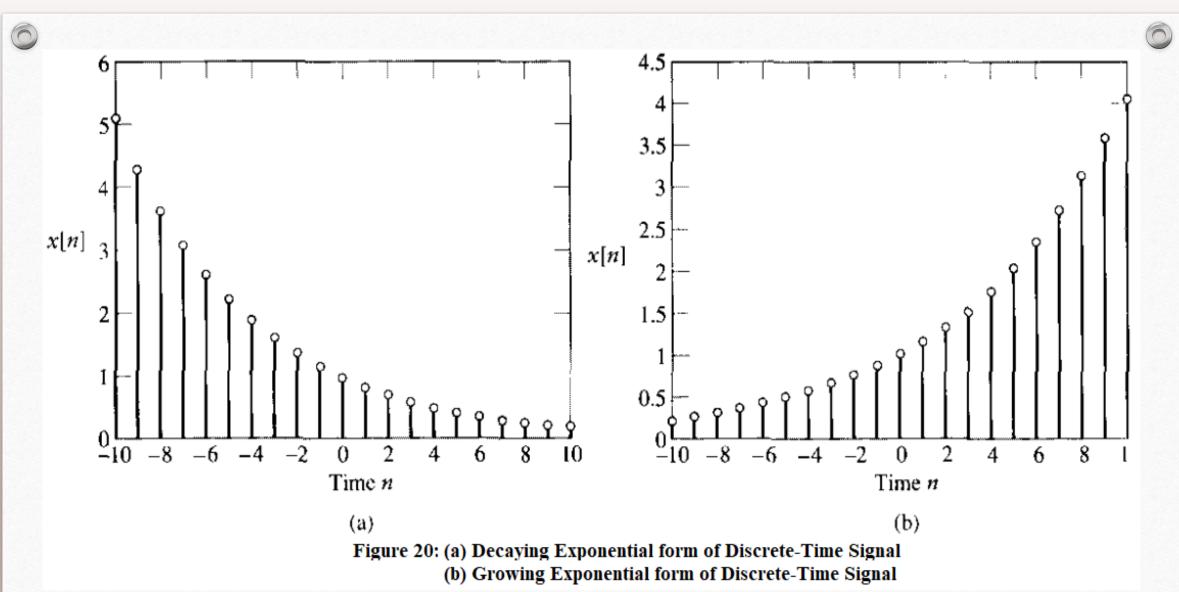
$$r = e^{\alpha}$$

For some α .

AMiT-ECE

- Figure 20 illustrates the decaying and growing forms of a discrete-time exponential signal corresponding to 0 < r < 1 and r > 1, respectively.
- This is where the case of discrete-time exponential signals is distinctly different from continuous-time exponential signals.
- Note that: when r < 0, a discrete-time exponential signal assume alternating signs.
- The exponential signals shown in figures 18 and 20 are real valued
- It is possible for an exponential signal to be complex-valued.

AMiT-ECE



• The mathematical forms of complex exponential signals are the same as those shown in equations:

$$x(t) = Be^{at}$$
 and $x[n] = Br^n$

With some differences explained here.

- In the continuous-time case, the parameter "B" or parameter "a" or both assume complex values.
- Similarly, in discrete-time case, the parameter "B" or parameter "r" or both assume complex values.
- Two commonly encountered examples of complex exponential signals are $e^{j\omega t}$ and $e^{j\Omega n}$

SINUSOIDAL SIGNAL

• The continuous-time version of a sinusoidal signal, in its most general form, may be written as:

$$x(t) = A * \cos(\omega t + \Phi)$$

Where:

- A is the amplitude
- $\geq \omega$ is the frequency in radians per second and
- $\triangleright \Phi$ is the phase angle in radians
- Figure 21(a) presents the wave form of a sinusoidal signal for A=4 and $\Phi=+\pi/6$
- A sinusoidal signal is an example of a periodic signal, the period of which is:

$$T = \frac{2\pi}{\omega}$$

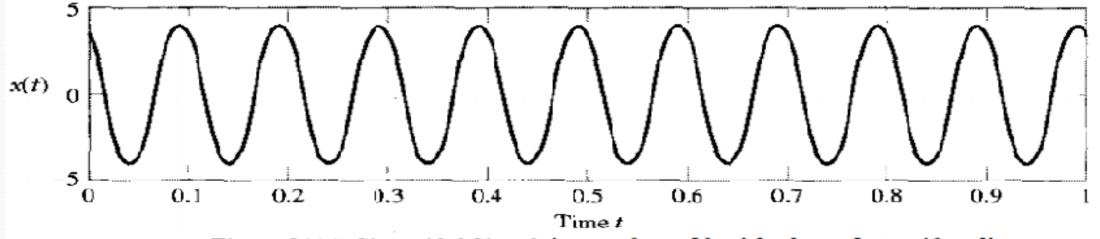


Figure 21(a): Sinusoidal Signal $A*\cos (\omega t + \Phi)$ with phase $\Phi = +\pi/6$ radians

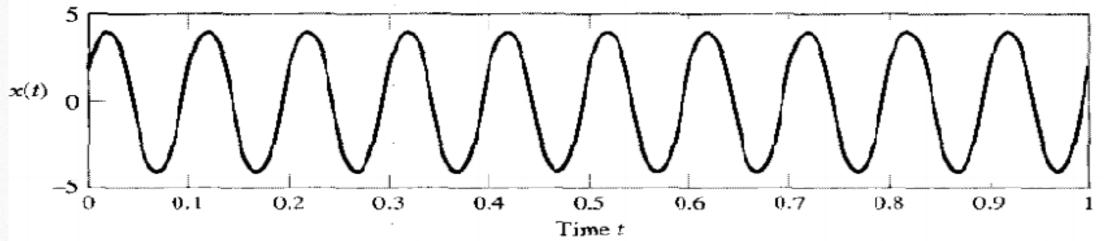


Figure 21(b): Sinusoidal Signal $A*sin (\omega t + \Phi)$ with phase $\Phi = +\pi/6$ radians

• We may readily prove the periodicity property of a sinusoidal signal by using the above equation to write:

$$x(t+T) = A * \cos(\omega(t+T) + \Phi)$$

$$= A * \cos(\omega t + \omega T + \Phi)$$

$$= A * \cos(\omega t + 2\pi + \Phi)$$

$$= A * \cos(\omega t + \Phi)$$

$$= x(t)$$

Which satisfies the defining condition of a periodic signal.

- To illustrate the generation of a sinusoidal signal, consider the circuit of figure 22 consisting of an inductor and capacitor connected in parallel.
- It is assumed that the losses in both components of the circuit are small enough for them to be considered "ideal".
- The voltage developed across the capacitor at time t = 0 is equal to V_o .
- The operation of the circuit in figure 22 for $t \ge 0$ is described by:

$$LC\frac{d^2}{dt^2}v(t) + v(t) = 0$$

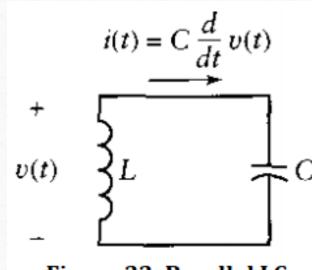


Figure 22: Parallel LC circuit

Where:

Cont ...

- >v(t) is the voltage across the capacitor at time t.
- C is the capacitance of the capacitor,
- L is the inductance of the inductor
- The above equation is a differential equation of order two.
- Its solution is given by:

$$v(t) = V_0 \cos(\omega_0 t), \qquad t \ge 0$$

Where ω_0 is the natural angular frequency of oscillation of the circuit:

$$\omega_o = \frac{1}{\sqrt{LC}}$$

- The equation for instantaneous voltage, $v(t) = V_o \cos(\omega_o t)$, describes a sinusoidal signal of amplitude $A = V_o$, frequency $\omega = \omega_o$ and phase angle $\Phi = 0$.
- Consider next the discrete-time version of a sinusoidal signal, written as: $x[n] = A * \cos(\Omega n + \Phi)$
- The period of a periodic discrete-time signal is measured in samples.
- Thus for x[n] to be periodic with a period of N samples, say, it must satisfy the condition of x[n] = x[n+N] for all integer "n" and some integer "N".

• Substituting n + N for n in the above equation yields:

$$x[n+N] = A * \cos(\Omega n + \Omega N + \Phi)$$

For the condition of periodic signal to be satisfied, in general, we require that:

$$\Omega N = 2\pi m \quad radians$$

$$or = \frac{2\pi m}{N} \quad \left(\frac{radians}{cycle}\right) \quad integer \, m, N$$

• The important point to note here is that, unlike continuous-time sinusoidal signals, not all discrete-time sinusoidal systems with arbitrary values of Ω are periodic.

• Specifically, for the discrete-time sinusoidal signal described in:

$$x[n] = A * \cos(\Omega n + \Phi)$$

to be periodic, the angular frequency Ω must be a rational multiple of 2π as indicated in:

$$\Omega = \frac{2\pi m}{N}$$

Figure 23 illustrates a discrete-time

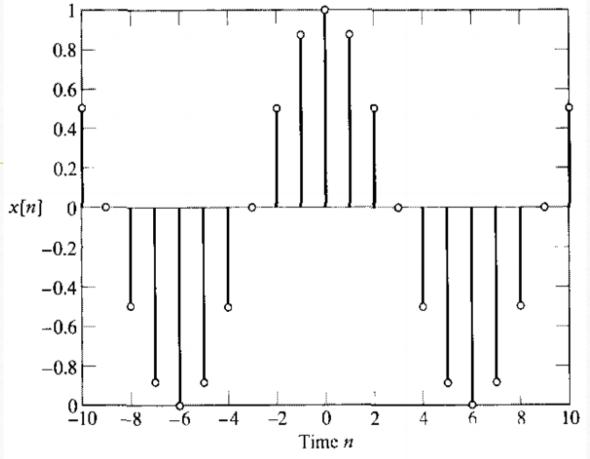


Figure 23: Discrete-Time Sinusoidal Signal

sinusoidal signal for A = 1, $\Phi = 0$ and N = 12.

Example 13:

• A pair of sinusoidal signals with a common angular frequency is defined by:

$$x_1[n] = \sin[5\pi n]$$

$$x_1[n] = \sin[5\pi n]$$
 and $x_2[n] = \sqrt{3}\cos[5\pi n]$

- Specify the condition which the period N of both $x_1[n]$ and $x_2[n]$ must satisfy for them to be periodic.
- Evaluate the amplitude and phase angle of the composite sinusoidal signal:

$$y[n] = x_1[n] + x_2[n]$$

Solution:

The angular frequency of both $x_1[n]$ and $x_2[n]$ is:

$$\Omega = 5\pi \, radians/cycle$$

• Solving for the period N:

$$N = \frac{2\pi m}{\Omega} = \frac{2\pi m}{5\pi} = \frac{2m}{5}$$

- For $x_1[n]$ and $x_2[n]$ to be periodic, their period N must be an integer.
- This can only be satisfied for m = 5, 10, 15, ... which results N = 2, 4, 6, ...
- b) We wish to express y[n] in the form:

$$y[n] = A * \cos(\Omega n + \Phi)$$

Recall the trigonometric identity:

$$A * \cos(\Omega n + \Phi) = A * \cos(\Omega n) * \cos(\Phi) - A * \sin(\Omega n) * \sin(\Phi)$$

- Identifying $\Omega = 5\pi$, we see that the right-hand side of this identity is of the same form as $x_1[n] + x_2[n]$.
- We may therefore write:

$$Asin(\Phi) = -1$$
 and $Acos(\Phi) = \sqrt{3}$

Hence:

$$\tan(\Phi) = \frac{\sin(\Phi)}{\cos(\Phi)} = \frac{Amplitude\ of\ x_1[n]}{Amplitude\ of\ x_2[n]} = \frac{-1}{\sqrt{3}}$$

For which we find that $\Phi = -\pi/6$ radians.

• Similarly, the amplitude A is given by:

$$A = \sqrt{(Amplitude\ of\ x_1[n])^2 + (Amplitude\ of\ x_2[n])^2} = \sqrt{1+3} = 2$$

Accordingly, we may express y[n] as: $y[n] = 2\cos(5\pi n - \pi/6)$

Example 14: Consider the following sinusoidal signals. Determine whether each x[n] is periodic, and if it is, find its fundamental period.

$$a) x[n] = 5 \sin[2n]$$

$$b) x[n] = 5\cos[0.2\pi n]$$

$$c) x[n] = 5 \cos[6\pi n]$$

d)
$$x[n] = 5\sin[6\pi n/35]$$

Answer:

(a) Non-periodic (b) Periodic, fundamental period = 10. (c) Periodic, fundamental period = 1. (d) Periodic, fundamental period = 35.

RELATION BETWEEN SINUSOIDAL AND COMPLEX EXPONENTIAL SIGNALS

- Consider the complex exponential $e^{j\theta}$.
- Using Euler's identity, we may expand this term as:

$$e^{j\theta} = \cos\theta + j\sin\theta$$

• This result indicates that, we may express the continuous-time sinusoidal signal of:

$$x(t) = A * \cos(\omega t + \Phi)$$

 $Be^{j\omega t}$

as the real part of the complex exponential signal:

Where B is itself a complex quantity defined by:

$$B = Ae^{j\Phi}$$

• That is, we may write:

$$A * \cos(\omega t + \Phi) = Re\{Be^{j\omega t}\}\$$

Where $Re\{$ } denotes the real part of the complex quantity enclosed inside the braces.

• We may readily prove this relation by noting that:

$$Be^{j\omega t} = Ae^{j\Phi}e^{j\omega t}$$

$$= Ae^{j(\omega t + \Phi)}$$

$$= A\cos(\omega t + \Phi) + jA\sin(\omega t + \Phi)$$

- Previously the sinusoidal signal is defined in terms of a cosine function.
- Of course, we may also define a continuous time sinusoidal signal in terms of a sine function, as shown by:

$$x(t) = A\sin(\omega t + \Phi)$$

- Which is represented by the imaginary part of the complex exponential signal $Be^{j\omega t}$.
- That is, we may write:

$$A\sin(\omega t + \Phi) = Im\{Be^{j\omega t}\}\$$

Where $Im\{$ } denotes the imaginary part of the complex quantity enclosed inside the braces.

- The sinusoidal signal $A \sin(\omega t + \Phi)$ differs from that of $A \cos(\omega t + \Phi)$ by a phase shift of 90° .
- That is, the sinusoidal signal $A\cos(\omega t + \Phi)$ leads the sinusoidal signal $A\sin(\omega t + \Phi)$, as illustrated in figure 21 for $\Phi = \pi/6$.
- Similarly, in the discrete-time case we may write:

$$Acos(\Omega n + \Phi) = Re\left\{Be^{j\Omega n}\right\}$$
 and $Asin(\Omega n + \Phi) = Im\left\{Be^{j\Omega n}\right\}$

Where B is defined in terms of A and Φ by $B = Ae^{j\Phi}$.

- Figure 24 shows the two dimensional representation of complex exponential $e^{j\Omega n}$ for $\Omega = \pi/4$ and $n = 0, 1, \dots, 7$.
- The projection of each value on the real axis is $cos(\Omega n)$, while the projection on the imaginary axis is $sin(\Omega n)$.

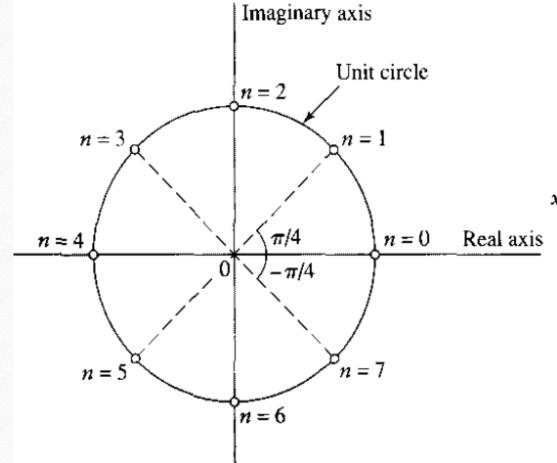


Figure 24: Complex plane, showing eight points uniformly distributed on the unit circle

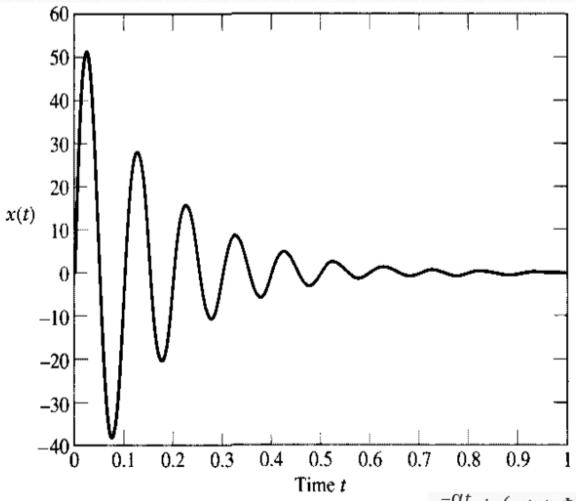


Figure 25: Exponentially damped sinusoidal signal $e^{-\alpha t}sin(\omega t + \Phi)$ with $\alpha > 0$

EXPONENTIALLY DAMPED SINUSOIDAL **SIGNAL**

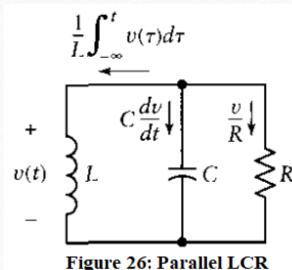
- The multiplication of a sinusoidal signal by a real-valued decaying exponential signal results in a new signal referred to as an exponentially damped sinusoidal signal.
- Specifically, multiplying the continuous-time sinusoidal signal $Asin(\omega t + \Phi)$ by the exponential $e^{-\alpha t}$ results in the exponentially damped sinusoidal signal:

$$x(t) = Ae^{-\alpha t}\sin(\omega t + \Phi), \qquad \alpha > 0$$

- Figure 25 shows the wave form of this signal for A=60, $\alpha=6$ and $\Phi=0$.
- For increasing time "t", the amplitude of the sinusoidal oscillations decreases in an exponential fashion, approaching zero for infinite time.

- To illustrate the generation of an exponentially damped sinusoidal signal, consider the parallel circuit of figure 26, consisting of a capacitor of capacitance C, an inductor of inductance L, and a resistor of resistance R.
- The resistance R represents the combined effect of losses associated with the inductor and the capacitor.
- Let V_o denote the voltage developed across the capacitor at time t = 0.
- The operation of the circuit in figure 26 is described by:

$$C\frac{d}{dt}v(t) + \frac{1}{R}v(t) + \frac{1}{L}\int_{-\infty}^{t}v(\tau)d\tau = 0$$



- Where v(t) is the voltage across the capacitor at time $t \ge 0$.
- The above equation is an integro-differential equation.
- Its solution is given by:

$$v(t) = V_o e^{-t/2RC} \cos(\omega_o t)$$

Where:

$$\omega_o = \sqrt{\frac{1}{LC} - \frac{1}{4C^2R^2}}$$

In the last equation it is assumed that $4CR^2 > L$

Comparing $x(t) = Ae^{-\Omega t}\sin(\omega t + \Phi)$ and $v(t) = V_o e^{-t/2RC}\cos(\omega_o t)$; we have:

$$A = V_o$$
, $\alpha = 1/2RC$, $\omega = \omega_o$ and $\Phi = \pi/2$.

• Returning to the subject matter at hand, the discrete-time version of the exponentially damped sinusoidal signal is described by:

$$x[n] = Br^n \sin[\Omega n + \Phi]$$

For the signal to decay exponentially with time, the parameter r must lie in the range 0 < r < 1.

